Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38808657

RESUMEN

Chilling stress threatens plant growth and development, particularly affecting membrane fluidity and cellular integrity. Understanding plant membrane responses to chilling stress is important for unraveling the molecular mechanisms of stress tolerance. Whereas core transcriptional responses to chilling stress and stress tolerance are conserved across species, the associated changes in membrane lipids appear to be less conserved, as which lipids are affected by chilling stress varies by species. Here, we investigated changes in gene expression and membrane lipids in response to chilling stress during one 24 hour cycle in chilling-tolerant foxtail millet (Setaria italica), and chilling-sensitive sorghum (Sorghum bicolor), and Urochloa (browntop signal grass, Urochloa fusca, lipids only), leveraging their evolutionary relatedness and differing levels of chilling-stress tolerance. We show that most chilling-induced lipid changes are conserved across the three species, while we observed distinct, time-specific responses in chilling-tolerant foxtail millet, indicating the presence of a finely orchestrated adaptive mechanism. We detected rhythmicity in lipid responses to chilling stress in the three grasses, which were also present in Arabidopsis (Arabidopsis thaliana), suggesting the conservation of rhythmic patterns across species and highlighting the importance of accounting for time of day. When integrating lipid datasets with gene expression profiles, we identified potential candidate genes that showed corresponding transcriptional changes in response to chilling stress, providing insights into the differences in regulatory mechanisms between chilling-sensitive sorghum and chilling-tolerant foxtail millet.

2.
BMC Plant Biol ; 24(1): 283, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627633

RESUMEN

BACKGROUND: Bud sports occur spontaneously in plants when new growth exhibits a distinct phenotype from the rest of the parent plant. The Witch's Broom bud sport occurs occasionally in various grapevine (Vitis vinifera) varieties and displays a suite of developmental defects, including dwarf features and reduced fertility. While it is highly detrimental for grapevine growers, it also serves as a useful tool for studying grapevine development. We used the Witch's Broom bud sport in grapevine to understand the developmental trajectories of the bud sports, as well as the potential genetic basis. We analyzed the phenotypes of two independent cases of the Witch's Broom bud sport, in the Dakapo and Merlot varieties of grapevine, alongside wild type counterparts. To do so, we quantified various shoot traits, performed 3D X-ray Computed Tomography on dormant buds, and landmarked leaves from the samples. We also performed Illumina and Oxford Nanopore sequencing on the samples and called genetic variants using these sequencing datasets. RESULTS: The Dakapo and Merlot cases of Witch's Broom displayed severe developmental defects, with no fruit/clusters formed and dwarf vegetative features. However, the Dakapo and Merlot cases of Witch's Broom studied were also phenotypically different from one another, with distinct differences in bud and leaf development. We identified 968-974 unique genetic mutations in our two Witch's Broom cases that are potential causal variants of the bud sports. Examining gene function and validating these genetic candidates through PCR and Sanger-sequencing revealed one strong candidate mutation in Merlot Witch's Broom impacting the gene GSVIVG01008260001. CONCLUSIONS: The Witch's Broom bud sports in both varieties studied had dwarf phenotypes, but the two instances studied were also vastly different from one another and likely have distinct genetic bases. Future work on Witch's Broom bud sports in grapevine could provide more insight into development and the genetic pathways involved in grapevine.


Asunto(s)
Hojas de la Planta , Vitis , Vitis/genética , Regulación de la Expresión Génica de las Plantas
3.
New Phytol ; 240(3): 1292-1304, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37614211

RESUMEN

Processes affecting rates of sequence polymorphism are fundamental to the evolution of gene duplicates. The relationship between gene activity and sequence polymorphism can influence the likelihood that functionally redundant gene copies are co-maintained in stable evolutionary equilibria vs other outcomes such as neofunctionalization. Here, we investigate genic variation in epigenome-associated polymorphism rates in Arabidopsis thaliana and consider whether these affect the evolution of gene duplicates. We compared the frequency of sequence polymorphism and patterns of genetic differentiation between genes classified by exon methylation patterns: unmethylated (unM), gene-body methylated (gbM), and transposon-like methylated (teM) states, which reflect divergence in gene expression. We found that the frequency of polymorphism was higher in teM (transcriptionally repressed, tissue-specific) genes and lower in gbM (active, constitutively expressed) genes. Comparisons of gene duplicates were largely consistent with genome-wide patterns - gene copies that exhibit teM accumulate more variation, evolve faster, and are in chromatin states associated with reduced DNA repair. This relationship between expression, the epigenome, and polymorphism may lead to the breakdown of equilibrium states that would otherwise maintain genetic redundancies. Epigenome-mediated polymorphism rate variation may facilitate the evolution of novel gene functions in duplicate paralogs maintained over evolutionary time.

4.
Plant Physiol ; 192(4): 2883-2901, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37061825

RESUMEN

Gene duplication is a source of evolutionary novelty. DNA methylation may play a role in the evolution of duplicate genes (paralogs) through its association with gene expression. While this relationship has been examined to varying extents in a few individual species, the generalizability of these results at either a broad phylogenetic scale with species of differing duplication histories or across a population remains unknown. We applied a comparative epigenomic approach to 43 angiosperm species across the phylogeny and a population of 928 Arabidopsis (Arabidopsis thaliana) accessions, examining the association of DNA methylation with paralog evolution. Genic DNA methylation was differentially associated with duplication type, the age of duplication, sequence evolution, and gene expression. Whole-genome duplicates were typically enriched for CG-only gene body methylated or unmethylated genes, while single-gene duplications were typically enriched for non-CG methylated or unmethylated genes. Non-CG methylation, in particular, was a characteristic of more recent single-gene duplicates. Core angiosperm gene families were differentiated into those which preferentially retain paralogs and "duplication-resistant" families, which convergently reverted to singletons following duplication. Duplication-resistant families that still have paralogous copies were, uncharacteristically for core angiosperm genes, enriched for non-CG methylation. Non-CG methylated paralogs had higher rates of sequence evolution, higher frequency of presence-absence variation, and more limited expression. This suggests that silencing by non-CG methylation may be important to maintaining dosage following duplication and be a precursor to fractionation. Our results indicate that genic methylation marks differing evolutionary trajectories and fates between paralogous genes and have a role in maintaining dosage following duplication.


Asunto(s)
Arabidopsis , Magnoliopsida , Metilación de ADN/genética , Filogenia , Genes Duplicados/genética , Magnoliopsida/genética , Evolución Molecular , Arabidopsis/genética , Duplicación de Gen
5.
Plant Direct ; 6(12): e457, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36523607

RESUMEN

Desiccation tolerance has evolved recurrently in grasses using two unique strategies of either protecting or dismantling the photosynthetic apparatus to minimize photooxidative damage under life without water (anhydrobiosis). Here, we surveyed chromatin architecture and gene expression during desiccation in two closely related grasses with distinguishing desiccation tolerance strategies to identify regulatory dynamics underlying these unique adaptations. In both grasses, we observed a strong association between nearby chromatin accessibility and gene expression in desiccated tissues compared to well-watered, reflecting an unusual chromatin stability under anhydrobiosis. Integration of chromatin accessibility (ATACseq) and expression data (RNAseq) revealed a core desiccation response across these two grasses. This includes many genes with binding sites for the core seed development transcription factor ABI5, supporting the long-standing hypothesis that vegetative desiccation tolerance evolved from rewiring seed pathways. Oropetium thomaeum has a unique set of desiccation induced genes and regulatory elements associated with photoprotection, pigment biosynthesis, and response to high light, reflecting its adaptation of protecting the photosynthetic apparatus under desiccation (homoiochlorophyly). By contrast, Eragrostis nindensis has unique accessible and expressed genes related to chlorophyll catabolism, scavenging of amino acids, and hypoxia, highlighting its poikilochlorophyllous adaptations of dismantling the photosynthetic apparatus and degrading chlorophyll under desiccation. Together, our results highlight the complex regulatory and expression dynamics underlying desiccation tolerance in grasses.

6.
Appl Plant Sci ; 8(12): e11404, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33344095

RESUMEN

PREMISE: Leaf morphology is dynamic, continuously deforming during leaf expansion and among leaves within a shoot. Here, we measured the leaf morphology of more than 200 grapevines (Vitis spp.) over four years and modeled changes in leaf shape along the shoot to determine whether a composite leaf shape comprising all the leaves from a single shoot can better capture the variation and predict species identity compared with individual leaves. METHODS: Using homologous universal landmarks found in grapevine leaves, we modeled various morphological features as polynomial functions of leaf nodes. The resulting functions were used to reconstruct modeled leaf shapes across the shoots, generating composite leaves that comprehensively capture the spectrum of leaf morphologies present. RESULTS: We found that composite leaves are better predictors of species identity than individual leaves from the same plant. We were able to use composite leaves to predict the species identity of previously unassigned grapevines, which were verified with genotyping. DISCUSSION: Observations of individual leaf shape fail to capture the true diversity between species. Composite leaf shape-an assemblage of modeled leaf snapshots across the shoot-is a better representation of the dynamic and essential shapes of leaves, in addition to serving as a better predictor of species identity than individual leaves.

7.
Appl Plant Sci ; 8(8): e11385, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32999772

RESUMEN

PREMISE: Maize yields have significantly increased over the past half-century owing to advances in breeding and agronomic practices. Plants have been grown in increasingly higher densities due to changes in plant architecture resulting in plants with more upright leaves, which allows more efficient light interception for photosynthesis. Natural variation for leaf angle has been identified in maize and sorghum using multiple mapping populations. However, conventional phenotyping techniques for leaf angle are low throughput and labor intensive, and therefore hinder a mechanistic understanding of how the leaf angle of individual leaves changes over time in response to the environment. METHODS: High-throughput time series image data from water-deprived maize (Zea mays subsp. mays) and sorghum (Sorghum bicolor) were obtained using battery-powered time-lapse cameras. A MATLAB-based image processing framework, Leaf Angle eXtractor (LAX), was developed to extract and quantify leaf angles from images of maize and sorghum plants under drought conditions. RESULTS: Leaf angle measurements showed differences in leaf responses to drought in maize and sorghum. Tracking leaf angle changes at intervals as short as one minute enabled distinguishing leaves that showed signs of wilting under water deprivation from other leaves on the same plant that did not show wilting during the same time period. DISCUSSION: Automating leaf angle measurements using LAX makes it feasible to perform large-scale experiments to evaluate, understand, and exploit the spatial and temporal variations in plant response to water limitations.

11.
Essays Biochem ; 63(6): 743-755, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31652316

RESUMEN

Cytosine DNA methylation is prevalent throughout eukaryotes and prokaryotes. While most commonly thought of as being localized to dinucleotide CpG sites, non-CG sites can also be modified. Such non-CG methylation is widespread in plants, occurring at trinucleotide CHG and CHH (H = A, T, or C) sequence contexts. The prevalence of non-CG methylation in plants is due to the plant-specific CHROMOMETHYLASE (CMT) and RNA-directed DNA Methylation (RdDM) pathways. These pathways have evolved through multiple rounds of gene duplication and gene loss, generating epigenomic variation both within and between species. They regulate both transposable elements and genes, ensure genome integrity, and ultimately influence development and environmental responses. In these capacities, non-CG methylation influence and shape plant genomes.


Asunto(s)
Metilación de ADN/fisiología , ADN/metabolismo , Fenómenos Fisiológicos de las Plantas/genética , ADN/química , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Elementos Transponibles de ADN/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/metabolismo , Plantas/genética , Reproducción/genética , Estrés Fisiológico/genética
12.
Plant J ; 99(5): 965-977, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31069858

RESUMEN

Artificial selection has produced varieties of domesticated maize that thrive in temperate climates around the world. However, the direct progenitor of maize, teosinte, is indigenous only to a relatively small range of tropical and subtropical latitudes and grows poorly or not at all outside of this region. Tripsacum, a sister genus to maize and teosinte, is naturally endemic to the majority of areas in the western hemisphere where maize is cultivated. A full-length reference transcriptome for Tripsacum dactyloides generated using long-read Iso-Seq data was used to characterize independent adaptation to temperate climates in this clade. Genes related to phospholipid biosynthesis, a critical component of cold acclimation in other cold-adapted plant lineages, were enriched among those genes experiencing more rapid rates of protein sequence evolution in T. dactyloides. In contrast with previous studies of parallel selection, we find that there is a significant overlap between the genes that were targets of artificial selection during the adaptation of maize to temperate climates and those that were targets of natural selection in temperate-adapted T. dactyloides. Genes related to growth, development, response to stimulus, signaling, and organelles were enriched in the set of genes identified as both targets of natural and artificial selection.


Asunto(s)
Aclimatación/fisiología , Poaceae/genética , Poaceae/fisiología , Selección Genética/fisiología , Zea mays/genética , Zea mays/fisiología , Frío , Genes de Plantas/genética , Antígenos HLA-G , Redes y Vías Metabólicas , Proteínas de Plantas/genética , Estrés Fisiológico , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...