Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 474: 134734, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38850937

RESUMEN

Fast and real-time detection of trace Hg(Ⅱ) by fluorescent probes under acidic conditions is urgently required due to the high toxicity and accessibility to creatures and human being. However, fluorescent probes for Hg(Ⅱ) detection in environmental samples are rarely reported due to the protonation potential of acidic mercury sources. In this study, the SD probe was developed by 5-(p-dimethylaminobenzylidene) rhodanine (DMABR) loaded on sepiolite by hydrothermal treatment, and showed excellent Hg(Ⅱ) detection performances for mercury sources at pH 4-10 due to buffering ability of the hyperconjugated lactam rings. Sepiolite functioned as the support skeleton to decrease intermolecular transition, and thus increased the sensitivity. At pH 4, the SD probe showed high selectivity and sensitivity for Hg(Ⅱ) among various species, with low LOD and binding constant of 4.78 × 10-9 M and 1.34 × 106 M-1, respectively. Through DFT calculations, MAS 1H NMR and 2D-COS analysis, the detection mechanism was demonstrated as SN1 substitution of the spontaneous leaving H on amino groups in the transient state during tautomeric equilibrium, rather than the expected high-affinity sulphydryl. Additionally, the SD probe exhibited promising potential in quantifying water-soluble and bioavailable Hg(Ⅱ) in acidic polluted soil and water samples. Moreover, real-time detection was realized by paper-based strips.

2.
Environ Monit Assess ; 195(12): 1467, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37962670

RESUMEN

The aim of the work was to establish the effect of anthropogenic activities and seasonality on physico-chemical parameters and heavy metal levels of River Yala (RY) within RY Basin of Lake Victoria (LV), as well as the associated ecological risks. Analyses were done on the collected samples in order to establish the levels of EC, pH, DO, temperature, conductivity, turbidity, acidity, alkalinity, BOD, COD, DOC, TOC and heavy metals (Cu, Fe, Pb, Mn, Zn, Cr and Cd) in RY water and sediments adjacent to Agricultural Farms during dry and wet seasons. The levels in terms of µg/mL, µS/cm (EC), NTU (turbidity) of analyzed parameters in the Agricultural Farms in water ranged from 0.01±0.00 to 121.75±15.23 (Upstream pristine sources of RY - S), 0.02±0.01 to 184.83±23.43 (Nandi Tea Estate and Kaimosi Agricultural Farms - N), 0.02±0.01 to 149.67±22.77 (Subsistence Farms - Sub), 0.02±0.01 to 209.33±18.09 (Lake Agro Limited Agricutural Farms and Yala Swamp - D) and 0.01±0.00 to 164.25±30.33 (Terminal of RY - T). The levels in µg/g of analyzed parameters in sediments ranged from 7.2±1.46 to 3342.8±538.7 (S), 9.12±0.2 to 4063.2±90.4 (N), 3.15±1.14 to 5998.5±588.4 (Sub), 2.03±0.76 to 4519.8±194.9 (D) and 2.13±0.75 to 5514.4±201.4 (T). The significant differences in the levels of analyzed parameters in water between dry and wet seasons were computed as; EC (+20.54 µS/cm), alkalinity (-2.85 µg/mL), DOC (+0.24 µg/mL), Fe (+0.58 µg/mL), Pb (+0.11 µg/mL), Zn (+0.07 µg/mL) and Cd (+0.01 µg/mL) while that for Mn in sediment samples was +163.8937 µg/g. The significantly (p ≤ 0.05) positive values indicated that wet season had more impact on the levels than dry season. There was positive correlation of zinc in water and sediments during dry and wet season. Chromium correlated positively in water and sediments during wet season. Copper and cadmium correlated negatively during dry and wet season while Mn only wet season. Results of geostatistical indices (CF, Cd, mCd, PLI, Er and RI) indicated that sediments located at regions N, D and T were highly contaminated with the heavy metals. However, a wetland at the mouth of Lake Victoria cleaned the water before it drained into the lake. Therefore, despite contamination of RY through anthropogenic activities, wetland mitigation protects LV from pollution by the river, indicating the important ecological and restorative functions played by wetlands.


Asunto(s)
Cadmio , Metales Pesados , Lagos , Ríos , Plomo , Monitoreo del Ambiente , Agua
3.
Environ Monit Assess ; 195(3): 431, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36849593

RESUMEN

The continued frequent detection of pharmaceuticals in the environment is of major concern due to potential human and ecological risks. This study evaluated 30 antibiotics from 8 classes: sulphonamides (SAs), penicillins (PNs), fluoroquinolones (FQs), macrolides (MLs), lincosamides (LINs), nitroimidazoles (NIs), diaminopyrimidines (DAPs), salfones and 4 anthelmintics benzimidazoles (BZs) in surface water and sediments from River Sosiani in Eldoret, Kenya. Samples were collected during the wet and dry seasons and subjected to solid phase extraction using HLB cartridges. A liquid chromatography tandem mass spectrometry (LC-MS/MS) method was used for the simultaneous quantification of the compounds. Chromatographic separation was on a reversed-phase Zorkax Eclipse Plus C18 column eluted in a gradient program and compounds detected by mass spectrometer operated in a positive electrospray ionization (+ ESI) mode. Twenty-eight antibiotics were detected in water where 22 had a 100% detection frequency and the remaining 4 showed detection frequencies ranging from 5 to 47%. Three BZs had a 100% detection frequency. Detectable concentrations of the pharmaceuticals in water ranged between 0.1 and 247 ng L-1 and 0.01 and 974 µg kg-1 in the sediments. The sulfonamide, sulfamethoxazole, had the highest concentration in water (247 ng L-1), whereas penicillin G showed the highest concentrations in sediments (414-974 µg kg-1). Quantified pharmaceuticals decreased in the order SAs > DAPs > FQs > ATs > PNs ≈ MCs ≈ LNs > NIs in water, and followed the order PNs > BZs > FQs > MLs > DAPs ≈ LNs > NIs > SAs in sediments. Risk quotients (RQw) showed that sulfamethoxazole and ciprofloxacin were of high ecological risk in the surface water (RQw values of 1.11 and 3.24, respectively), whereas penicillin V, ampicillin, penicillin G, norfloxacin, enrofloxacin, erythromycin, tylosin, and lincomycin were of medium ecological risk in the aquatic system. The findings show high prevalence of pharmaceuticals in surface water and sediments and are therefore potential ecological hazards. Such information is vital when devising mitigation strategies.


Asunto(s)
Nitroimidazoles , Ríos , Humanos , Kenia , Cromatografía Liquida , Espectrometría de Masas en Tándem , Monitoreo del Ambiente , Antibacterianos , Penicilinas , Fluoroquinolonas , Sulfametoxazol , Macrólidos , Bencimidazoles , Preparaciones Farmacéuticas
4.
Rev Environ Health ; 38(3): 479-491, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-35538694

RESUMEN

OBJECTIVES: Despite the quantum of research findings on tobacco epidemic, a review on the formation characteristics of nicotine, aldehydes and phenols, and their associated etiological risks is still limited in literature. Accordingly, knowledge on the chemical properties and free radical formation during tobacco burning is an important subject towards unravelling the relationship between smoking behaviour and disease. This review investigates how scientific efforts have been advanced towards understanding the release of molecular products from the thermal degradation of tobacco, and harm reduction strategies among cigarette smokers in general. The mechanistic characteristics of nicotine and selected aldehydes are critically examined in this review. For the purpose of this work, articles published during the period 2004-2021 and archived in PubMed, Google Scholar, Medley, Cochrane, and Web of Science were used. The articles were selected based on the health impacts of cigarette smoking, tobacco burning kinetics, tobacco cessation and tobacco as a precursor for emerging diseases such as Covid-19. CONTENT: The toxicity of cigarette smoke is directly correlated with its chemical composition derived from the pyrolysis of tobacco stem and leaves. Most of the harmful toxic substances are generated by pyrolysis during smoking and depends on pyrolysis conditions. Detailed studies have been conducted on the kinetics of nicotine by use of robust theoretical models in order to determine the rate constants of reactions in nicotine and those of nicotine dissociation via C-C and C-N scission, yielding pyridinyl and methyl radicals, respectively. Research has suggested that acetaldehyde enhances the effect of nicotine, which in turn reinforces addiction characteristics whereas acrolein and crotonaldehyde are ciliatoxic, and can inhibit lung clearance. On the other hand, phenol affects liver enzymes, lungs, kidneys, and the cardiovascular system while m-cresol attacks the nervous system. SUMMARY AND OUTLOOK: The characteristics of chemical release during tobacco burning are very important in the tobacco industry and the cigarette smoking community. Understanding individual chemical formation from cigarette smoking will provide the necessary information needed to formulate sound tobacco reform policies from a chemical standpoint. Nonetheless, intense research is needed in this field in order to prescribe possible measures to deter cigarette smoking addiction and ameliorate the grave miseries bedevilling the tobacco smoking community.


Asunto(s)
COVID-19 , Nicotiana , Nicotiana/efectos adversos , Nicotina , Aldehídos , Acroleína
5.
Environ Sci Technol ; 56(23): 16907-16918, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36354282

RESUMEN

Microplastics (MPs) can enter plants through the foliar pathway and are potential hazards to ecosystems and human health. However, studies related to the molecular mechanisms underlying the impact of foliar exposure to differently charged MPs to leafy vegetables are limited. Because the surfaces of MPs in the environment are often charged, we explored the uptake pathways, accumulation concentration of MPs, physiological responses, and molecular mechanisms of lettuce foliarly exposed to MPs carrying positive (MP+) and negative charges (MP-). MPs largely accumulated in the lettuce leaves, and stomatal uptake and cuticle entry could be the main pathways for MPs to get inside lettuce leaves. More MP+ entered lettuce leaves and induced physiological, transcriptomic, and metabolomic changes, including a decrease in biomass and photosynthetic pigments, an increase in reactive oxygen species and antioxidant activities, a differential expression of genes, and a change of metabolite profiles. In particular, MP+ caused the upregulation of circadian rhythm-related genes, and this may play a major role in the greater physiological toxicity of MP+ to lettuce, compared to MP-. These findings provide direct evidence that MPs can enter plant leaves following foliar exposure and a molecular-scale perspective on the response of leafy vegetables to differently charged MPs.


Asunto(s)
Lactuca , Microplásticos , Humanos , Plásticos , Transcriptoma , Ecosistema , Verduras
6.
RSC Adv ; 12(35): 22792-22805, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36105978

RESUMEN

Biodiesel is an alternative renewable green fuel obtainable from the reaction of plant or animal oil with a low molecular weight alcohol in the presence of a catalyst. However, the cost of its production remains high due to costly feedstock, the majority of which is competitively also used as food, and the use of homogeneous catalysts, which pose difficulties in product purification and resulting environmental pollution. The aim of this study was to explore the production of biodiesel through transesterification of non-edible and cheap Jatropha curcas (JC) oil using a zeolite Na-X catalyst obtained from naturally occurring kaolin clay. The transesterification parameters, namely reaction temperature, reaction time, catalyst loading and methanol to oil molar ratio were optimized using the L16(44) Taguchi orthogonal array approach. The catalyst loading was found to be the most influential parameter at 93.79%. The optimum conditions for the conversion of JC oil, with a biodiesel yield of up to 93.94%, were found to be a methanol to oil molar ratio of 10 : 1, catalyst loading of 8%, reaction temperature of 70 °C and reaction time of 5 h. Fuel characterization parameters were within the European Norm (EN) 14214:2019 biodiesel specifications. Our findings offer insights into the ideal parametric conditions for the cost-effective synthesis of biodiesel from JC oil via zeolite-catalyzed esterification.

7.
Environ Pollut ; 294: 118602, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34856247

RESUMEN

The polycyclic aromatic hydrocarbons (PAHs) that enter the aqueous phase usually coexist with fulvic acid (FA). Therefore, we initiated this investigation to explore the influences of FA on bacterial biofilm formation and its potential to biodegrade pyrene (PYR), using electron microscopic techniques and isobaric tags for relative and absolute quantification (iTRAQ). Our results revealed that FA stimulated biofilm formation and enhanced the biodegradation of PYR. First, FA favored the three-dimensional proliferation of bacteria, with an OD590/OD600 value of up to 14.78, and the extracellular surfaces covered by a layer of biomaterials. Distinctive intracellular morphologies of texture and organization were accompanied by reduced inter-bacterial distances of less than 0.31 µm. The biofilms formed displayed interactions between FA and surficial proteins, as noted by band shifts for the C-O and CO groups. Strikingly, FA triggered the upregulation of 130 proteins that were either operational in biofilm formation or in metabolic adjustments; with the changes supported by the increasing intensity of free amino acids and the newly generated N-O bonds. The results above revealed that the enhanced biodegradation was related to the up-regulation of the proteins functioned for ribosomal and carbon metabolism, and the ultra-structural changes in FA-induced biofilm system.


Asunto(s)
Carbono , Hidrocarburos Policíclicos Aromáticos , Benzopiranos , Biodegradación Ambiental , Biopelículas , Pirenos , Regulación hacia Arriba
8.
Z Gesundh Wiss ; 30(6): 1485-1500, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33425659

RESUMEN

Aim: The economic burden caused by death and disease in the world is credited mainly to tobacco use-currently linked to approximately 8,000,000 deaths per year with approximately 80% of these faralities reported in low and middle income economies. The World Health Organization (WHO) estimates that nearly 7,000,000 deaths are attributed to direct tobacco use, while approximately 1,200,000 non-smokers exposed to second hand cigarette smoke die every year. Accordingly, tobacco use is a major threat to the public health infrastructure; therefore, proper cessation interventions must be put in place to curb tobacco abuse and ease economic and social burdens caused by the tobacco epidemic. Methods: A systematic review was conducted to investigate how scientific efforts have been advanced towards harm reduction among smokers and non-smokers. Relevant articles published during the period 2010-2020 in PubMed, Crossref, Google scholar, and Web of Science were used in this study. The articles were selected based on health impacts of cigarette smoking, tobacco cessation and emerging diseases, including Covid-19. Various cessation strategies have been identified although their efficiency is yet to match the desired results. Results: A series of carcinogenic chemicals are generated during cigarette smoking resulting in serious health complications such as cancer and mutagenesis. The precursors for tobacco induced diseases are toxic and carcinogenic chemicals of the nitrosamine type, aldehydes, polonium-210 and benzo[a]pyrene, which bio-accumulate in the body system during cigarette smoking to cause disease. Rehabilitation facilities, use of drugs to diminish the desire to smoke, heavy taxation of tobacco products and warning labels on cigarettes are some of the cessation strategies employed towards curbing tobacco abuse. Conclusion: The need for further research to develop better methods and research based policies for safe cigarette smoking and workable cessation strategies must be a priority in order to deal with the tobacco epidemic. Campaigns to promote tobacco cessation and abstinence are recommended in this review as a sure measure to mitigate against the deleterious impacts caused by cigarette smoking and tobacco abuse.

9.
Sci Total Environ ; 813: 151893, 2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-34826487

RESUMEN

Fe content and distribution on montmorillonite would probably enhance its sorption capacity for hydrophobic organic pollutants. Thus, Fe modified montmorillonites with different ratios of FeSO4·7H2O and Ca-montmorillonite were prepared. The results indicated that γ-Fe2O3 nanoparticles were not only generated at the montmorillonite surfaces, but that the γ-Fe2O3 also extended the edges of montmorillonite surfaces. The sorption capacities for pyrene were enhanced and even reached 834.79 µg g-1 with increase in ferrous iron content, but were then suppressed due to aggregation of γ-Fe2O3 on montmorillonite surfaces. Furthermore, pyrene was directly observed on γ-Fe2O3-montmorillonite surfaces with a lattice spacing parameter of approximately 0.27 nm, indicating that a new phase that mainly contained pyrene was generated during the sorption process. Additionally, after regenerating the γ-Fe2O3-montmorillonite composites, they could be reused for at least 5 cycles. It is therefore proposed that the prepared γ-Fe2O3-montmorillonite could be exploited as a potential green composite for remediation of hydrophobic organic pollutants in soil and sediment.


Asunto(s)
Bentonita , Nanopartículas , Adsorción , Hierro , Pirenos , Suelo
10.
Innovation (Camb) ; 2(4): 100179, 2021 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-34877560

RESUMEN

Artificial intelligence (AI) coupled with promising machine learning (ML) techniques well known from computer science is broadly affecting many aspects of various fields including science and technology, industry, and even our day-to-day life. The ML techniques have been developed to analyze high-throughput data with a view to obtaining useful insights, categorizing, predicting, and making evidence-based decisions in novel ways, which will promote the growth of novel applications and fuel the sustainable booming of AI. This paper undertakes a comprehensive survey on the development and application of AI in different aspects of fundamental sciences, including information science, mathematics, medical science, materials science, geoscience, life science, physics, and chemistry. The challenges that each discipline of science meets, and the potentials of AI techniques to handle these challenges, are discussed in detail. Moreover, we shed light on new research trends entailing the integration of AI into each scientific discipline. The aim of this paper is to provide a broad research guideline on fundamental sciences with potential infusion of AI, to help motivate researchers to deeply understand the state-of-the-art applications of AI-based fundamental sciences, and thereby to help promote the continuous development of these fundamental sciences.

11.
Sci Total Environ ; 676: 420-428, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31048172

RESUMEN

DDT and its main metabolites (DDTs) are still the residual contaminants in soil. Sequential anaerobic-aerobic cycling has long been approved for enhancing the degradation of DDTs in soil. However, there is a lack of study investigating whether anaerobic-aerobic cycling would enhance the mineralization of DDT, and what a kind of anaerobic-aerobic management regimes would be optimal. To fill these gaps, the fate of 14C-DDT under different flooding-drying cycles was examined in a paddy soil by monitoring its mineralization and bioavailability. The results show the total mineralization of 14C-DDT in 314 days accounted for 1.01%, 1.30%, and 1.41%, individually for the treatments subjected to one, two, and three flooding-drying cycles. By comparison, the treatment subjected to the permanently aerobic phase had only 0.12% cumulative mineralization. Shorter intervals and multiple flooding-drying cycles enhanced the mineralization of 14C-DDT, however, reduced its bioavailability. Therefore, the enhanced mineralization was explained from an abiotic pathway as predicted by the one-electron reduction potential (E1), the Fukui function for nucleophilic attack (f+) and the steps for anaerobic decarboxylation. From a practical view, it is important to investigate how the anaerobic-aerobic interval and frequency would affect the degradation and mineralization of DDT, which is very essential in developing remediation strategies.

12.
Environ Sci Pollut Res Int ; 26(9): 8779-8788, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30712212

RESUMEN

DDT transformation to DDD in soil is the most commonly reported pathway under anaerobic conditions. A few instances of DDT conversion to products other than DDD/DDE have been reported under aerobic conditions and hardly any under anaerobic conditions. In particular, few reports exist on the anaerobic degradation of DDT in African tropical soils, despite DDT contamination arising from obsolete pesticide stockpiles in the continent as well as new contamination from DDT use for mosquito and tsetse fly control. Moreover, the development of possible remediation strategies for contaminated sites demands adequate understanding of different soil processes and their effect on DDT persistence, hence necessitating the study. The aim of this work was to study the effect of simulated anaerobic conditions and slow-release carbon sources (compost) on the dissipation of DDT in two tropical clay soils (paddy soil and field soil) amenable to periodic flooding. The results showed faster DDT dissipation in the field soil but higher metabolite formation in the paddy soil. To explain this paradox, the levels of dissolved organic carbon and carbon mineralization (CH4 and CO2) were correlated with p,p-DDT and p,p-DDD concentrations. It was concluded that DDT underwent reductive degradation (DDD pathway) in the paddy soil and both reductive (DDD pathway) and oxidative degradation (non-DDD pathway) in the field soil.


Asunto(s)
DDT/química , Diclorodifenildicloroetano/química , Plaguicidas/química , Contaminantes del Suelo/química , Suelo/química , Carbono , Arcilla , Compostaje , DDT/análisis , Restauración y Remediación Ambiental , Clima Tropical
13.
Environ Sci Pollut Res Int ; 25(3): 2265-2272, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29119491

RESUMEN

It has recently been demonstrated that the addition of nanoscale zero-valent iron (nZVI) to oxygen-containing water or soil aquifers results in the oxidation of organic compounds. However, there has been little insight about the generation of the reactive oxygen species (ROS) that play a vital role in the transformation of contaminants in the presence of nZVI. This study investigated (i) the degradation of 2-chlorobiphenyl (2-CB) by nZVI; (ii) the generation and role of ROS in this process. Under anaerobic and aerobic conditions, the removal efficiency of 2-CB was 65.5 and 59.4%, respectively, after 4 h at a pH of 5.0. The results demonstrated that both the reductive and oxidative processes account for 2-CB degradation under aerobic conditions. Hydroxyl radicals (·OH) generated by nZVI at low pH could efficiently degrade 2-CB, the main reductive dechlorination product was biphenyl. Two other hydroxylation products (2-chlorophenol and 2-hydroxybiphenyl) were also examined. There was a higher degradation efficiency of 2-CB under acidic conditions than basic conditions because more ·OH was generated by nZVI. The presence of natural organic matters (NOMs), including humic acid (HA), salicylic acid (SA), galic acid (GA), and tannic acid (TA), increased the degradation efficiency of 2-CB (k values ranged from 0.0041 to 0.0042 min-1), because NOMs can mediate the electron transfer from the nZVI surface to O2, and facilitate the production of Fe2+ and H2O2 that subsequently form ·OH. The mechanisms of these processes have provided new insights into the role of nZVI in the transformation of organic compounds.


Asunto(s)
Compuestos de Bifenilo/análisis , Hierro/química , Modelos Teóricos , Nanopartículas/química , Oxígeno/química , Contaminantes Químicos del Agua/análisis , Compuestos de Bifenilo/química , Halogenación , Sustancias Húmicas/análisis , Oxidación-Reducción , Especies Reactivas de Oxígeno/química , Contaminantes Químicos del Agua/química
14.
Environ Monit Assess ; 187(11): 691, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26475171

RESUMEN

Mau Forest in the upper reaches of the Mara River basin has recently undergone increased forest destruction followed by human settlement and agricultural activities. These anthropogenic activities may be contributing nutrients and heavy metals, ultimately polluting the river water and eventually Lake Victoria water hence damaging these aquatic ecosystems. This study sought to establish the effect of anthropogenic activities and season on the water quality of the Amala and Nyangores tributaries of the River Mara in Kenya. Pristine springs in the Mau Forest were used as reference sites. Water samples were analyzed for pH, temperature, conductivity, nutrients, selected heavy metals, and selenium. The mean range of the parameters measured from sites along the tributaries was pH 5.44-7.48 and that for conductivity was 20-99 µS/cm while the mean range of nutrient levels (µg/L) was 80-443 (NO3--N), 21.7-82.7 (NH4+-N), 11.9-65.0 (soluble reactive phosphorous), and 51-490 (total phosphorous). The mean range for heavy metals and selenium (in µg/L) from sites along the tributaries were 6.56-37.6 (Cu), 0.26-4.97 (Cd), 13.9-213 (Zn), 0.35-3.14 (Cr), 0.19-5.53 (Mn), 1.90-9.62 (Pb), and 0.21-4.50 (Se). The results indicated a significant difference (p≤0.05) between the reference sites and the different sampling sites, indicating that anthropogenic activities were impacting the quality of water in the two tributaries. Although most of the parameters were within the WHO (2004), USEPA (2014) and NEMA (2006) acceptable limits for surface waters, they were above the permissible levels for domestic use. Moreover, the levels of nutrients, heavy metals, and selenium were significantly higher in the wet season than in the dry season, further indicating that anthropogenic activities are causing a disturbance in the aquatic system. Therefore, further anthropogenic activities should be checked and limited so as to conserve the ecosystem.


Asunto(s)
Monitoreo del Ambiente , Ríos/química , Contaminantes Químicos del Agua/análisis , Agricultura , Agua Dulce , Humanos , Kenia , Metales Pesados/análisis , Estaciones del Año , Calidad del Agua
15.
Environ Pollut ; 206: 421-8, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26256145

RESUMEN

Co-contaminated soils by organic pollutants (OPs), antibiotics and antibiotic resistance genes (ARGs) have been becoming an emerging problem. However, it is unclear if an interaction exists between mixed pollutants and ARG abundance. Therefore, the potential relationship between OP contents and ARG and class 1 integron-integrase gene (intI1) abundance was investigated from seven dairy farms in Nanjing, Eastern China. Phenanthrene, pentachlorophenol, sulfadiazine, roxithromycin, associated ARG genes, and intI1 had the highest detection frequencies. Correlation analysis suggested a stronger positive relationship between the ARG abundance and the bioaccessible OP content than the total OP content. Additionally, the significant correlation between the bioaccessible mixed pollutant contents and ARG/intI1 abundance suggested a direct/indirect impact of the bioaccessible mixed pollutants on soil ARG dissemination. This study provided a preliminary understanding of the interaction between mixed pollutants and ARGs in co-contaminated soils.


Asunto(s)
Antibacterianos/análisis , Bacterias/efectos de los fármacos , Microbiología del Suelo , Contaminantes del Suelo/análisis , Antibacterianos/farmacología , Bacterias/genética , Bacterias/aislamiento & purificación , China , Industria Lechera , Farmacorresistencia Bacteriana , Genes Bacterianos/efectos de los fármacos , Integrones/efectos de los fármacos , Suelo/química , Contaminantes del Suelo/farmacología
16.
J Hazard Mater ; 300: 121-128, 2015 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-26164069

RESUMEN

Soils are exposed to various types of chemical contaminants due to anthropogenic activities; however, research on persistent organic pollutants and the existence of antibiotic resistance genes (ARGs) is limited. To our knowledge, the present work for the first time focused on the bioremediation of soil co-contaminated with pyrene and tetracycline/sulfonamide-resistance genes. After 90 days of incubation, the pyrene concentration and the abundance of the four ARGs (tetW, tetM, sulI, and sulII) significantly decreased in different treatment conditions (p<0.05). The greatest pyrene removal (47.8%) and greatest decrease in ARG abundance (from 10(-7) to 10(-8) ARG copies per 16S rRNA copy) were observed in microcosms with a combination of bacterial and sophorolipid treatment. Throughout the incubation, pyrene bioaccessibility constantly declined in the microcosm inoculated with bacteria. However, an increased pyrene bioaccessibility and ARG abundance at day 40 were observed in soil treated with sophorolipid alone. Tenax extraction methods and linear correlation analysis indicated a strong positive relationship between the rapidly desorbing fraction (Fr) of pyrene and ARG abundance. Therefore, we conclude that bioaccessible pyrene rather than total pyrene plays a major role in the maintenance and fluctuation of ARG abundance in the soil.


Asunto(s)
Farmacorresistencia Microbiana/genética , Genes Bacterianos , Pirenos/metabolismo , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Sphingomonadaceae/genética , Biodegradación Ambiental , Lípidos/farmacología , Pirenos/análisis , ARN Ribosómico 16S/genética , Contaminantes del Suelo/análisis , Sphingomonadaceae/efectos de los fármacos , Sphingomonadaceae/metabolismo , Tensoactivos/farmacología
17.
Chemosphere ; 138: 18-24, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26025430

RESUMEN

The objective of the study was to elucidate the biotic and abiotic processes under dissimilatory iron reducing conditions involved in reductive dechlorination and iron reduction. DDT transformation was investigated in cultures of Shewanella putrefaciens 200 with/without α-FeOOH. A modified first-order kinetics model was developed and described DDT transformation well. Both the α-FeOOH reduction rate and the dechlorination rate of DDT were positively correlated to the biomass. Addition of α-FeOOH enhanced reductive dechlorination of DDT by favoring the cell survival and generating Fe(II) which was absorbed on the surface of bacteria and iron oxide. 92% of the absorbed Fe(II) was Na-acetate (1M) extractable. However, α-FeOOH also played a negative role of competing for electrons as reflected by the dechlorination rate of DDT was inhibited when increasing the α-FeOOH from 1 g L(-1) to 5 g L(-1). DDT was measured to be toxic to S. putrefaciens 200. The metabolites DDD, DDE and DDMU were recalcitrant to S. putrefaciens 200. The results suggested that iron oxide was not the key factor to promote the dissipation of DDX (DDT and the metabolites), whereas the one-electron reduction potential (E1) of certain organochlorines is the main factor and that the E1 higher than the threshold of the reductive driving forces of DIRB probably ensures the occur of reductive dechlorination.


Asunto(s)
Biodegradación Ambiental , DDT/análisis , Contaminantes Ambientales/análisis , Hierro/metabolismo , Shewanella putrefaciens/metabolismo , Biomasa , Biotransformación , DDT/metabolismo , DDT/toxicidad , Contaminantes Ambientales/metabolismo , Contaminantes Ambientales/toxicidad , Oxidación-Reducción , Shewanella putrefaciens/efectos de los fármacos
18.
Environ Sci Process Impacts ; 17(1): 74-80, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25406989

RESUMEN

The objective of this study is to compare the efficacies of powder activated carbon (PAC) and granular activated carbon (GAC) as amendments for the immobilization of volatile compounds in soil. Soil artificially-spiked with chlorobenzenes (CBs) was amended with either PAC or GAC to obtain an application rate of 1%. The results showed that the dissipation and volatilization of CBs from the amended soil significantly decreased compared to the unamended soil. The bioavailabilities of CBs, which is expressed as butanol extraction and earthworm accumulation, were significantly reduced in PAC and GAC amended soils. The lower chlorinated and hence more volatile CBs experienced higher reductions in both dissipation and bioavailability in the amended soils. The GAC and PAC equally immobilized more volatile CBs in soil. Therefore, it could be concluded that along with environmental implication, applying GAC was the more promising approach for the effective immobilization of volatile compounds in soil.


Asunto(s)
Carbón Orgánico/química , Clorobencenos/química , Contaminantes del Suelo/química , Suelo/química , Animales , Clorobencenos/metabolismo , Oligoquetos/metabolismo , Contaminantes del Suelo/metabolismo
19.
Environ Sci Pollut Res Int ; 22(4): 2687-98, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25201695

RESUMEN

An innovative ex situ soil washing technology was developed to remediate polybrominated diphenyl ethers (PBDEs) and heavy metals in an electronic waste site. Elevated temperature (50 °C) in combination with ultrasonication (40 kHz, 20 min) at 5.0 mL L(-1) sunflower oil and 2.5 g L(-1) carboxymethyl chitosan were found to be effective in extracting mixed pollutants from soil. After two successive washing cycles, the removal efficiency rates for total PBDEs, BDE28, BDE47, BDE209, Pb, and Cd were approximately 94.1, 93.4, 94.3, 99.1, 89.3, and 92.7 %, respectively. Treating the second washed soil with PBDE-degrading bacteria (Rhodococcus sp. strain RHA1) inoculation and nutrient addition for 3 months led to maximum biodegradation rates of 37.3, 52.6, 23.9, and 1.3 % of the remaining total PBDEs, BDE28, BDE47, BDE209, respectively. After the combined treatment, the microbiological functions of washed soil was partially restored, as indicated by a significant increase in the counts, biomass C, N, and functioning diversity of soil microorganisms (p < 0.05), and the residual PBDEs and heavy metals mainly existed as very slow desorbing fractions and residual fractions, as evaluated by Tenax extraction combined with a first-three-compartment model and sequential extraction with metal stability indices (I R and U ts). Additionally, the secondary environmental risk of mixed contaminants in the remediated soil was limited. Therefore, the proposed combined cleanup strategy is an environment-friendly technology that is important for risk assessment and management in mixed-contaminated sites.


Asunto(s)
Cadmio/análisis , Quitosano/análogos & derivados , Éteres Difenilos Halogenados/análisis , Plomo/análisis , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Cadmio/química , Cadmio/metabolismo , Quitosano/química , Residuos Electrónicos/análisis , Éteres Difenilos Halogenados/química , Éteres Difenilos Halogenados/metabolismo , Plomo/química , Plomo/metabolismo , Aceites de Plantas/química , Rhodococcus/metabolismo , Suelo/química , Contaminantes del Suelo/química , Contaminantes del Suelo/metabolismo , Solventes/química , Aceite de Girasol , Agua/química
20.
J Environ Sci (China) ; 26(8): 1661-72, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25108722

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs)/heavy metals/fluorine (F) mixed-contaminated sites caused by abandoned metallurgic plants are receiving wide attention. To address the associated environmental problems, this study was initiated to investigate the feasibility of using carboxymethyl-ß-cyclodextrin (CMCD) and carboxymethyl chitosan (CMC) solution to enhance ex situ soil washing for extracting mixed contaminants. Further, Tenax extraction method was combined with a first-three-compartment model to evaluate the environmental risk of residual PAHs in washed soil. In addition, the redistribution of heavy metals/F after decontamination was also estimated using a sequential extraction procedure. Three successive washing cycles using 50 g/L CMCD and 5 g/L CMC solution were effective to remove 94.3% of total PAHs, 93.2% of Pb, 85.8% of Cd, 93.4% of Cr, 83.2% of Ni and 97.3% of F simultaneously. After the 3rd washing, the residual PAHs mainly existed as very slowly desorbing fractions, which were in the form of well-aged, well-sequestered compounds; while the remaining Pb, Cd, Cr, Ni and F mainly existed as Fe-Mn oxide and residual fractions, which were always present in stable mineral forms or bound to non-labile soil fractions. Therefore, this combined cleanup strategy proved to be effective and environmentally friendly.


Asunto(s)
Quitosano/análogos & derivados , Flúor/química , Metales Pesados/química , Hidrocarburos Policíclicos Aromáticos/química , Suelo/química , beta-Ciclodextrinas/química , Quitosano/química , Metalurgia , Contaminantes del Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...