Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(44): e2210434119, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36282921

RESUMEN

The cJun NH2-terminal kinase (JNK) signaling pathway in the liver promotes systemic changes in metabolism by regulating peroxisome proliferator-activated receptor α (PPARα)-dependent expression of the hepatokine fibroblast growth factor 21 (FGF21). Hepatocyte-specific gene ablation studies demonstrated that the Mapk9 gene (encoding JNK2) plays a key mechanistic role. Mutually exclusive inclusion of exons 7a and 7b yields expression of the isoforms JNK2α and JNK2ß. Here we demonstrate that Fgf21 gene expression and metabolic regulation are primarily regulated by the JNK2α isoform. To identify relevant substrates of JNK2α, we performed a quantitative phosphoproteomic study of livers isolated from control mice, mice with JNK deficiency in hepatocytes, and mice that express only JNK2α or JNK2ß in hepatocytes. We identified the JNK substrate retinoid X receptor α (RXRα) as a protein that exhibited JNK2α-promoted phosphorylation in vivo. RXRα functions as a heterodimeric partner of PPARα and may therefore mediate the effects of JNK2α signaling on Fgf21 expression. To test this hypothesis, we established mice with hepatocyte-specific expression of wild-type or mutated RXRα proteins. We found that the RXRα phosphorylation site Ser260 was required for suppression of Fgf21 gene expression. Collectively, these data establish a JNK-mediated signaling pathway that regulates hepatic Fgf21 expression.


Asunto(s)
Síndrome Metabólico , PPAR alfa , Animales , Ratones , Proteínas Portadoras/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Síndrome Metabólico/metabolismo , Ratones Noqueados , Fosforilación , PPAR alfa/genética , PPAR alfa/metabolismo , Receptor alfa X Retinoide/genética , Receptor alfa X Retinoide/metabolismo , MAP Quinasa Quinasa 4/metabolismo
2.
Elife ; 92020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33287957

RESUMEN

Liver metabolism follows diurnal fluctuations through the modulation of molecular clock genes. Disruption of this molecular clock can result in metabolic disease but its potential regulation by immune cells remains unexplored. Here, we demonstrated that in steady state, neutrophils infiltrated the mouse liver following a circadian pattern and regulated hepatocyte clock-genes by neutrophil elastase (NE) secretion. NE signals through c-Jun NH2-terminal kinase (JNK) inhibiting fibroblast growth factor 21 (FGF21) and activating Bmal1 expression in the hepatocyte. Interestingly, mice with neutropenia, defective neutrophil infiltration or lacking elastase were protected against steatosis correlating with lower JNK activation, reduced Bmal1 and increased FGF21 expression, together with decreased lipogenesis in the liver. Lastly, using a cohort of human samples we found a direct correlation between JNK activation, NE levels and Bmal1 expression in the liver. This study demonstrates that neutrophils contribute to the maintenance of daily hepatic homeostasis through the regulation of the NE/JNK/Bmal1 axis.


Every day, the body's biological processes work to an internal clock known as the circadian rhythm. This rhythm is controlled by 'clock genes' that are switched on or off by daily physical and environmental cues, such as changes in light levels. These daily rhythms are very finely tuned, and disturbances can lead to serious health problems, such as diabetes or high blood pressure. The ability of the body to cycle through the circadian rhythm each day is heavily influenced by the clock of one key organ: the liver. This organ plays a critical role in converting food and drink into energy. There is evidence that neutrophils ­ white blood cells that protect the body by being the first response to inflammation ­ can influence how the liver performs its role in obese people, by for example, releasing a protein called elastase. Additionally, the levels of neutrophils circulating in the blood change following a daily pattern. Crespo, González-Terán et al. wondered whether neutrophils enter the liver at specific times of the day to control liver's daily rhythm. Crespo, González-Terán et al. revealed that neutrophils visit the liver in a pattern that peaks when it gets light and dips when it gets dark by counting the number of neutrophils in the livers of mice at different times of the day. During these visits, neutrophils secreted elastase, which activated a protein called JNK in the cells of the mice's liver. This subsequently blocked the activity of another protein, FGF21, which led to the activation of the genes that allow cells to make fat molecules for storage. JNK activation also switched on the clock gene, Bmal1, ultimately causing fat to build up in the mice's liver. Crespo, González-Terán et al. also found that, in samples from human livers, the levels of elastase, the activity of JNK, and whether the Bmal1 gene was switched on were tightly linked. This suggests that neutrophils may be controlling the liver's rhythm in humans the same way they do in mice. Overall, this research shows that neutrophils can control and reset the liver's daily rhythm using a precisely co-ordinated series of molecular changes. These insights into the liver's molecular clock suggest that elastase, JNK and BmaI1 may represent new therapeutic targets for drugs or smart medicines to treat metabolic diseases such as diabetes or high blood pressure.


Asunto(s)
Proteínas CLOCK/metabolismo , Regulación de la Expresión Génica/fisiología , Hepatocitos/metabolismo , Neutrófilos/fisiología , Animales , Proteínas CLOCK/genética , Células Cultivadas , Ritmo Circadiano , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Humanos , Inflamación/metabolismo , MAP Quinasa Quinasa 4/genética , MAP Quinasa Quinasa 4/metabolismo , Ratones , Ratones Transgénicos , Neutropenia
3.
Mol Syst Biol ; 15(8): e8849, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31464373

RESUMEN

Obesity-associated type 2 diabetes and accompanying diseases have developed into a leading human health risk across industrialized and developing countries. The complex molecular underpinnings of how lipid overload and lipid metabolites lead to the deregulation of metabolic processes are incompletely understood. We assessed hepatic post-translational alterations in response to treatment of cells with saturated and unsaturated free fatty acids and the consumption of a high-fat diet by mice. These data revealed widespread tyrosine phosphorylation changes affecting a large number of enzymes involved in metabolic processes as well as canonical receptor-mediated signal transduction networks. Targeting two of the most prominently affected molecular features in our data, SRC-family kinase activity and elevated reactive oxygen species, significantly abrogated the effects of saturated fat exposure in vitro and high-fat diet in vivo. In summary, we present a comprehensive view of diet-induced alterations of tyrosine signaling networks, including proteins involved in fundamental metabolic pathways.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa/efectos adversos , Hígado/efectos de los fármacos , Obesidad/metabolismo , Fosfotirosina/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Línea Celular Tumoral , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Modelos Animales de Enfermedad , Ácidos Grasos/farmacología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Obesidad/etiología , Obesidad/genética , Obesidad/patología , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteómica/métodos , Ratas , Especies Reactivas de Oxígeno/agonistas , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
4.
J Immunol ; 202(3): 647-651, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30610162

RESUMEN

Apoptosis of CD8 T cells is an essential mechanism that maintains immune system homeostasis, prevents autoimmunity, and reduces immunopathology. CD8 T cell death also occurs early during the response to both inflammation and costimulation blockade (CoB). In this article, we studied the effects of a combined deficiency of Fas (extrinsic pathway) and Bim (intrinsic pathway) on early T cell attrition in response to lymphocytic choriomeningitis virus infection and during CoB during transplantation. Loss of Fas and Bim function in Bcl2l11-/-Faslpr/lpr mice inhibited apoptosis of T cells and prevented the early T cell attrition resulting from lymphocytic choriomeningitis virus infection. Bcl2l11-/-Faslpr/lpr mice were also resistant to prolonged allograft survival induced by CoB targeting the CD40-CD154 pathway. These results demonstrate that both extrinsic and intrinsic apoptosis pathways function concurrently to regulate T cell homeostasis during the early stages of immune responses and allograft survival during CoB.


Asunto(s)
Apoptosis , Proteína 11 Similar a Bcl2/genética , Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica , Inflamación/inmunología , Receptor fas/genética , Animales , Infecciones por Arenaviridae/inmunología , Linfocitos T CD8-positivos/virología , Regulación de la Expresión Génica , Homeostasis , Virus de la Coriomeningitis Linfocítica , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Trasplante de Piel
5.
J Neurosci ; 38(15): 3708-3728, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29540552

RESUMEN

The c-Jun N-terminal kinase (JNK) signal transduction pathway is implicated in learning and memory. Here, we examined the role of JNK activation mediated by the JNK-interacting protein 1 (JIP1) scaffold protein. We compared male wild-type mice with a mouse model harboring a point mutation in the Jip1 gene that selectively blocks JIP1-mediated JNK activation. These male mutant mice exhibited increased NMDAR currents, increased NMDAR-mediated gene expression, and a lower threshold for induction of hippocampal long-term potentiation. The JIP1 mutant mice also displayed improved hippocampus-dependent spatial memory and enhanced associative fear conditioning. These results were confirmed using a second JIP1 mutant mouse model that suppresses JNK activity. Together, these observations establish that JIP1-mediated JNK activation contributes to the regulation of hippocampus-dependent, NMDAR-mediated synaptic plasticity and learning.SIGNIFICANCE STATEMENT The results of this study demonstrate that c-Jun N-terminal kinase (JNK) activation induced by the JNK-interacting protein 1 (JIP1) scaffold protein negatively regulates the threshold for induction of long-term synaptic plasticity through the NMDA-type glutamate receptor. This change in plasticity threshold influences learning. Indeed, mice with defects in JIP1-mediated JNK activation display enhanced memory in hippocampus-dependent tasks, such as contextual fear conditioning and Morris water maze, indicating that JIP1-JNK constrains spatial memory. This study identifies JIP1-mediated JNK activation as a novel molecular pathway that negatively regulates NMDAR-dependent synaptic plasticity and memory.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Plasticidad Neuronal , Memoria Espacial , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Células Cultivadas , Condicionamiento Clásico , Hipocampo/citología , Hipocampo/metabolismo , Hipocampo/fisiología , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/fisiología , Mutación Puntual , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
6.
Cell Rep ; 21(11): 3317-3328, 2017 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-29241556

RESUMEN

Obesity is a major human health crisis that promotes insulin resistance and, ultimately, type 2 diabetes. The molecular mechanisms that mediate this response occur across many highly complex biological regulatory levels that are incompletely understood. Here, we present a comprehensive molecular systems biology study of hepatic responses to high-fat feeding in mice. We interrogated diet-induced epigenomic, transcriptomic, proteomic, and metabolomic alterations using high-throughput omic methods and used a network modeling approach to integrate these diverse molecular signals. Our model indicated that disruption of hepatic architecture and enhanced hepatocyte apoptosis are among the numerous biological processes that contribute to early liver dysfunction and low-grade inflammation during the development of diet-induced metabolic syndrome. We validated these model findings with additional experiments on mouse liver sections. In total, we present an integrative systems biology study of diet-induced hepatic insulin resistance that uncovered molecular features promoting the development and maintenance of metabolic disease.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Hepatocitos/metabolismo , Hígado/metabolismo , Metaboloma/genética , Obesidad/genética , Transcriptoma , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Animales , Apoptosis/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Hepatocitos/patología , Hepatocitos/ultraestructura , Insulina/metabolismo , Resistencia a la Insulina , Hígado/fisiopatología , Hígado/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/metabolismo , Obesidad/fisiopatología , Mapeo de Interacción de Proteínas
7.
Sci Rep ; 7(1): 174, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28282965

RESUMEN

Diet plays a crucial role in shaping human health and disease. Diets promoting obesity and insulin resistance can lead to severe metabolic diseases, while calorie-restricted (CR) diets can improve health and extend lifespan. In this work, we fed mice either a chow diet (CD), a 16 week high-fat diet (HFD), or a CR diet to compare and contrast the effects of these diets on mouse liver biology. We collected transcriptomic and epigenomic datasets from these mice using RNA-Seq and DNase-Seq. We found that both CR and HFD induce extensive transcriptional changes, in some cases altering the same genes in the same direction. We used our epigenomic data to infer transcriptional regulatory proteins bound near these genes that likely influence their expression levels. In particular, we found evidence for critical roles played by PPARα and RXRα. We used ChIP-Seq to profile the binding locations for these factors in HFD and CR livers. We found extensive binding of PPARα near genes involved in glycolysis/gluconeogenesis and uncovered a role for this factor in regulating anaerobic glycolysis. Overall, we generated extensive transcriptional and epigenomic datasets from livers of mice fed these diets and uncovered new functions and gene targets for PPARα.


Asunto(s)
Restricción Calórica/efectos adversos , Dieta Alta en Grasa/efectos adversos , Epigenómica/métodos , Perfilación de la Expresión Génica/métodos , Hígado/química , PPAR alfa/genética , Anaerobiosis , Animales , Epigénesis Genética , Regulación de la Expresión Génica , Glucólisis , Masculino , Ratones , Estado Nutricional , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN
8.
Elife ; 5: e10031, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26910012

RESUMEN

The cJun NH2-terminal kinase (JNK) signaling pathway is implicated in the response to metabolic stress. Indeed, it is established that the ubiquitously expressed JNK1 and JNK2 isoforms regulate energy expenditure and insulin resistance. However, the role of the neuron-specific isoform JNK3 is unclear. Here we demonstrate that JNK3 deficiency causes hyperphagia selectively in high fat diet (HFD)-fed mice. JNK3 deficiency in neurons that express the leptin receptor LEPRb was sufficient to cause HFD-dependent hyperphagia. Studies of sub-groups of leptin-responsive neurons demonstrated that JNK3 deficiency in AgRP neurons, but not POMC neurons, was sufficient to cause the hyperphagic response. These effects of JNK3 deficiency were associated with enhanced excitatory signaling by AgRP neurons in HFD-fed mice. JNK3 therefore provides a mechanism that contributes to homeostatic regulation of energy balance in response to metabolic stress.


Asunto(s)
Proteína Quinasa 10 Activada por Mitógenos/metabolismo , Neuronas/fisiología , Estrés Fisiológico , Proteína Relacionada con Agouti/análisis , Animales , Dieta Alta en Grasa , Hiperfagia , Ratones , Ratones Noqueados , Proteína Quinasa 10 Activada por Mitógenos/deficiencia
9.
Diabetes ; 64(9): 3172-81, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25931473

RESUMEN

Understanding distinct gene expression patterns of normal adult and developing fetal human pancreatic α- and ß-cells is crucial for developing stem cell therapies, islet regeneration strategies, and therapies designed to increase ß-cell function in patients with diabetes (type 1 or 2). Toward that end, we have developed methods to highly purify α-, ß-, and δ-cells from human fetal and adult pancreata by intracellular staining for the cell-specific hormone content, sorting the subpopulations by flow cytometry, and, using next-generation RNA sequencing, we report the detailed transcriptomes of fetal and adult α- and ß-cells. We observed that human islet composition was not influenced by age, sex, or BMI, and transcripts for inflammatory gene products were noted in fetal ß-cells. In addition, within highly purified adult glucagon-expressing α-cells, we observed surprisingly high insulin mRNA expression, but not insulin protein expression. This transcriptome analysis from highly purified islet α- and ß-cell subsets from fetal and adult pancreata offers clear implications for strategies that seek to increase insulin expression in type 1 and type 2 diabetes.


Asunto(s)
Feto/citología , Regulación del Desarrollo de la Expresión Génica , Células Secretoras de Glucagón/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , ARN/genética , Células Secretoras de Somatostatina/metabolismo , Adolescente , Adulto , Preescolar , Femenino , Perfilación de la Expresión Génica , Humanos , Islotes Pancreáticos/citología , Masculino , Persona de Mediana Edad , Embarazo , Segundo Trimestre del Embarazo , Análisis de Secuencia de ARN , Adulto Joven
10.
J Biol Chem ; 290(24): 14875-83, 2015 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-25922079

RESUMEN

Obesity and metabolic disorders such as insulin resistance and type 2 diabetes have become a major threat to public health globally. The mechanisms that lead to insulin resistance in type 2 diabetes have not been well understood. In this study, we show that mice deficient in MAPK phosphatase 5 (MKP5) develop insulin resistance spontaneously at an early stage of life and glucose intolerance at a later age. Increased macrophage infiltration in white adipose tissue of young MKP5-deficient mice correlates with the development of insulin resistance. Glucose intolerance in MKP5-deficient mice is accompanied by significantly increased visceral adipose weight, reduced AKT activation, enhanced p38 activity, and increased inflammation in visceral adipose tissue when compared with wild-type (WT) mice. Deficiency of MKP5 resulted in increased inflammatory activation in macrophages. These findings thus demonstrate that MKP5 critically controls inflammation in white adipose tissue and the development of metabolic disorders.


Asunto(s)
Tejido Adiposo/patología , Inflamación/enzimología , Resistencia a la Insulina , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Tejido Adiposo/enzimología , Animales , Glucosa/metabolismo , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética
11.
Cell Rep ; 5(1): 259-70, 2013 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-24095730

RESUMEN

Diet-induced obesity (DIO) predisposes individuals to insulin resistance, and adipose tissue has a major role in the disease. Insulin resistance can be induced in cultured adipocytes by a variety of treatments, but what aspects of the in vivo responses are captured by these models remains unknown. We use global RNA sequencing to investigate changes induced by TNF-α, hypoxia, dexamethasone, high insulin, and a combination of TNF-α and hypoxia, comparing the results to the changes in white adipose tissue from DIO mice. We found that different in vitro models capture distinct features of DIO adipose insulin resistance, and a combined treatment of TNF-α and hypoxia is most able to mimic the in vivo changes. Using genome-wide DNase I hypersensitivity followed by sequencing, we further examined the transcriptional regulation of TNF-α-induced insulin resistance, and we found that C/EPBß is a potential key regulator of adipose insulin resistance.


Asunto(s)
Tejido Adiposo/metabolismo , Resistencia a la Insulina/fisiología , Factor de Necrosis Tumoral alfa/fisiología , Animales , Modelos Animales de Enfermedad , Humanos , Ratones
12.
Mol Cell Biol ; 31(7): 1565-76, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21282468

RESUMEN

The c-Jun NH(2)-terminal kinase (JNK) signal transduction pathway causes increased gene expression mediated, in part, by members of the activating transcription factor protein (AP1) group. JNK is therefore implicated in the regulation of cell growth and cancer. To test the role of JNK in Ras-induced tumor formation, we examined the effect of compound ablation of the ubiquitously expressed genes Jnk1 plus Jnk2. We report that JNK is required for Ras-induced transformation of p53-deficient primary cells in vitro. Moreover, JNK is required for lung tumor development caused by mutational activation of the endogenous KRas gene in vivo. Together, these data establish that JNK plays a key role in Ras-induced tumorigenesis.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/patología , Lesiones Precancerosas/enzimología , Lesiones Precancerosas/patología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Animales , Apoptosis , Cadherinas/metabolismo , Proliferación Celular , Transformación Celular Neoplásica/patología , Inhibición de Contacto , Fibroblastos/metabolismo , Ratones , Transducción de Señal , Estrés Fisiológico , Ensayo de Tumor de Célula Madre , Proteína p53 Supresora de Tumor/metabolismo
13.
Mol Cell Biol ; 30(1): 106-15, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19841069

RESUMEN

Obesity caused by feeding of a high-fat diet (HFD) is associated with an increased activation of c-Jun NH(2)-terminal kinase 1 (JNK1). Activated JNK1 is implicated in the mechanism of obesity-induced insulin resistance and the development of metabolic syndrome and type 2 diabetes. Significantly, Jnk1(-)(/)(-) mice are protected against HFD-induced obesity and insulin resistance. Here we show that an ablation of the Jnk1 gene in skeletal muscle does not influence HFD-induced obesity. However, muscle-specific JNK1-deficient (M(KO)) mice exhibit improved insulin sensitivity compared with control wild-type (M(WT)) mice. Thus, insulin-stimulated AKT activation is suppressed in muscle, liver, and adipose tissue of HFD-fed M(WT) mice but is suppressed only in the liver and adipose tissue of M(KO) mice. These data demonstrate that JNK1 in muscle contributes to peripheral insulin resistance in response to diet-induced obesity.


Asunto(s)
Resistencia a la Insulina , Proteína Quinasa 8 Activada por Mitógenos/fisiología , Músculo Esquelético/enzimología , Obesidad/fisiopatología , Animales , Grasas de la Dieta , Ratones , Ratones Noqueados , Proteína Quinasa 8 Activada por Mitógenos/genética , Obesidad/enzimología , Obesidad/etiología , Especificidad de Órganos , Transducción de Señal
14.
Mol Cell Biol ; 29(17): 4831-40, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19564410

RESUMEN

Scaffold proteins have been established as important mediators of signal transduction specificity. The insulin receptor substrate (IRS) proteins represent a critical group of scaffold proteins that are required for signal transduction by the insulin receptor, including the activation of phosphatidylinositol 3 kinase. The c-Jun NH(2)-terminal kinase (JNK)-interacting proteins (JIPs) represent a different group of scaffold molecules that are implicated in the regulation of the JNK. These two signaling pathways are functionally linked because JNK can phosphorylate IRS1 on the negative regulatory site Ser-307. Here we demonstrate the physical association of these signaling pathways using a proteomic approach that identified insulin-regulated complexes of JIPs together with IRS scaffold proteins. Studies using mice with JIP scaffold protein defects confirm that the JIP1 and JIP2 proteins are required for normal glucose homeostasis. Together, these observations demonstrate that JIP proteins can influence insulin-stimulated signal transduction mediated by IRS proteins.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Transducción de Señal/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular Tumoral , Análisis Mutacional de ADN , Grasas de la Dieta , Activación Enzimática , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Páncreas/ultraestructura , Fosfatidilinositol 3-Quinasas/metabolismo , Mutación Puntual , Proteoma/análisis
15.
Genes Dev ; 21(18): 2336-46, 2007 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-17875667

RESUMEN

JIP scaffold proteins are implicated in the regulation of protein kinase signal transduction pathways. To test the physiological role of these scaffold proteins, we examined the phenotype of compound mutant mice that lack expression of JIP proteins. These mice were found to exhibit severe defects in N-methyl-D-aspartic acid (NMDA) receptor function, including decreased NMDA-evoked current amplitude, cytoplasmic Ca(++), and gene expression. The decreased NMDA receptor activity in JIP-deficient neurons is associated with reduced tyrosine phosphorylation of NR2 subunits of the NMDA receptor. JIP complexes interact with the SH2 domain of cFyn and may therefore promote tyrosine phosphorylation and activity of the NMDA receptor. We conclude that JIP scaffold proteins are critically required for normal NMDA receptor function.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , N-Metilaspartato/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Células COS , Cerebelo/embriología , Cerebelo/metabolismo , Chlorocebus aethiops , Cinesinas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Fosforilación , Proteínas Tirosina Quinasas/metabolismo , Receptores de N-Metil-D-Aspartato/fisiología , Transducción de Señal/genética
16.
Cancer Cell ; 11(6): 555-69, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17560336

RESUMEN

Although most oncogenic phenotypes of PTEN loss are attributed to AKT activation, AKT alone is not sufficient to induce all of the biological activities associated with PTEN inactivation. We searched for additional PTEN-regulated pathways through gene set enrichment analysis (GSEA) and identified genes associated with JNK activation. PTEN null cells exhibit higher JNK activity, and genetic studies demonstrate that JNK functions parallel to and independently of AKT. Furthermore, PTEN deficiency sensitizes cells to JNK inhibition and negative feedback regulation of PI3K was impaired in PTEN null cells. Akt and JNK activation are highly correlated in human prostate cancer. These findings implicate JNK in PI3K-driven cancers and demonstrate the utility of GSEA to identify functional pathways using genetically defined systems.


Asunto(s)
Transformación Celular Neoplásica , Perfilación de la Expresión Génica , Genes Supresores de Tumor , Fosfohidrolasa PTEN/metabolismo , Transducción de Señal , Animales , Activación Enzimática , Retroalimentación Fisiológica , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones , Ratones Noqueados , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
17.
Cancer Cell ; 11(2): 101-3, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17292820

RESUMEN

It is established that p38 MAPK can negatively regulate tumorigenesis, but the mechanism is incompletely understood. A new study in this issue of Cancer Cell shows that p38 MAP kinase plays a selective role in tumor initiation mediated by oxidative stress.


Asunto(s)
Transformación Celular Neoplásica , Proteína Quinasa 14 Activada por Mitógenos/fisiología , Neoplasias/enzimología , Estrés Oxidativo , Animales , Apoptosis , Humanos , Proteína Quinasa 14 Activada por Mitógenos/genética , Neoplasias/patología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
18.
Genes Dev ; 20(19): 2701-12, 2006 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-17015432

RESUMEN

Cytoplasmic polyadenylation element-binding protein (CPEB) is a sequence-specific RNA-binding protein that promotes polyadenylation-induced translation. While a CPEB knockout (KO) mouse is sterile but overtly normal, embryo fibroblasts derived from this mouse (MEFs) do not enter senescence in culture as do wild-type MEFs, but instead are immortal. Exogenous CPEB restores senescence in the KO MEFs and also induces precocious senescence in wild-type MEFs. CPEB cannot stimulate senescence in MEFs lacking the tumor suppressors p53, p19ARF, or p16(INK4A); however, the mRNAs encoding these proteins are unlikely targets of CPEB since their expression is the same in wild-type and KO MEFs. Conversely, Ras cannot induce senescence in MEFs lacking CPEB, suggesting that it may lie upstream of CPEB. One target of CPEB regulation is myc mRNA, whose unregulated translation in the KO MEFs may cause them to bypass senescence. Thus, CPEB appears to act as a translational repressor protein to control myc translation and resulting cellular senescence.


Asunto(s)
Senescencia Celular/fisiología , Proteínas de Unión al ARN/fisiología , Animales , Western Blotting/métodos , Ciclo Celular/efectos de los fármacos , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Senescencia Celular/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Masculino , Ratones , Ratones Noqueados , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/farmacología , Proteína p14ARF Supresora de Tumor/genética , Proteína p14ARF Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo
19.
Nature ; 430(7001): 793-7, 2004 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-15306813

RESUMEN

Mitogen-activated protein (MAP) kinases are essential regulators in immune responses, and their activities are modulated by kinases and phosphatases. MAP kinase phosphatase (MKP) is a family of dual-specificity phosphatases whose function is evolutionarily conserved. A number of mammalian MKPs have been identified so far, but their specific physiological functions in negative regulation of MAP kinases have not been genetically defined. Here we examine innate and adaptive immune responses in the absence of MKP5. JNK activity was selectively increased in Mkp5 (also known as Dusp10)-deficient mouse cells. Mkp5-deficient cells produced greatly enhanced levels of pro-inflammatory cytokines during innate immune responses and exhibited greater T-cell activation than their wild-type counterparts. However, Mkp5-deficient T cells proliferated poorly upon activation, which resulted in increased resistance to experimental autoimmune encephalomyelitis. By contrast, Mkp5-deficient CD4(+) and CD8(+) effector T cells produced significantly increased levels of cytokines compared with wild-type cells, which led to much more robust and rapidly fatal immune responses to secondary infection with lymphocytic choriomeningitis virus. Therefore, MKP5 has a principal function in both innate and adaptive immune responses, and represents a novel target for therapeutic intervention of immune diseases.


Asunto(s)
Inmunidad Innata/inmunología , Inmunidad/inmunología , Macrófagos Peritoneales/enzimología , Macrófagos Peritoneales/inmunología , Proteínas Tirosina Fosfatasas/metabolismo , Linfocitos T/enzimología , Linfocitos T/inmunología , Animales , División Celular/efectos de los fármacos , Células Cultivadas , Fosfatasas de Especificidad Dual , Encefalomielitis Autoinmune Experimental , Eliminación de Gen , Humanos , Interleucina-6/biosíntesis , Interleucina-6/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Proteínas Quinasas JNK Activadas por Mitógenos , Células Jurkat , Lipopolisacáridos/farmacología , Activación de Linfocitos/efectos de los fármacos , Virus de la Coriomeningitis Linfocítica/fisiología , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Ratones , Ratones Noqueados , Fosfatasas de la Proteína Quinasa Activada por Mitógenos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Tirosina Fosfatasas/genética , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/metabolismo
20.
Mol Cell ; 15(2): 269-78, 2004 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-15260977

RESUMEN

The c-Jun NH2-terminal kinase (JNK) has been implicated in the function of transforming growth factor beta (TGF-beta). To test the role of JNK, we examined the effect of compound disruption of the murine genes that encode the ubiquitously expressed isoforms of JNK (Jnk1 and Jnk2). We report that JNK-deficient fibroblasts isolated from Jnk1-/- Jnk2-/- mice constitutively express TGF-beta1. Complementation studies demonstrate that JNK is a repressor of Tgf-beta1 gene expression. This mechanism of regulation of TGF-beta1 expression by JNK represents an unexpected form of cross-talk between two important signaling pathways. Together, these data demonstrate that the JNK pathway may contribute to the regulation of autocrine TGF-beta1-mediated biological responses in vivo.


Asunto(s)
Comunicación Autocrina , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Proteínas Quinasas Activadas por Mitógenos/fisiología , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Receptores de Activinas Tipo I/antagonistas & inhibidores , Receptores de Activinas Tipo I/genética , Animales , Bromodesoxiuridina , Ciclo Celular , División Celular , Movimiento Celular , Ensayo de Cambio de Movilidad Electroforética , Perfilación de la Expresión Génica , Genes Dominantes , Homocigoto , Proteínas Quinasas JNK Activadas por Mitógenos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Noqueados , Ratones Desnudos , Proteínas Quinasas Activadas por Mitógenos/genética , Invasividad Neoplásica , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas , Receptor Cross-Talk , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/antagonistas & inhibidores , Receptores de Factores de Crecimiento Transformadores beta/genética , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta1 , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...