Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 950
Filtrar
2.
Front Pharmacol ; 15: 1464005, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39380911

RESUMEN

Introduction: Cannabis, commonly known for both therapeutic and intoxicating effects, is gaining accessibility on legal markets and traction as a potential alternative therapy for pain mediation, particularly in those suffering from chronic low back pain. However, the effectiveness in this population of legal market forms of cannabis, particularly commonly used edibles, is unknown. Methods: Therefore, this study utilized a naturalistic prospective design where participants with chronic low back pain with intentions to initiate cannabis use for treatment were recruited and self-selected edible cannabis products containing varying amounts of delta- 9 tetrahydrocannabinol (THC) and cannabidiol (CBD). Products were categorized as CBD-dominant, THC-dominant, or combined THC and CBD (THC + CBD). Results: 249 participants [140 female (56.62%), mean (SD) age of 46.30 (16.02), 90% White] were tracked over 2 weeks of ad libitum use and assessed during a naturalistic acute cannabis administration session on changes in pain, mood, and subjective drug effects. During acute administration, a significant correlation between THC dose and short-term pain relief was found, suggesting that higher THC doses were associated with greater pain reduction (p < .05). In addition, THC was associated with higher levels of subjective cannabis drug effects (p < .001), regardless of whether CBD was also in the edible product. Acute CBD dose was primarily associated with short-term tension relief (p < .05); however, there were no associations between CBD dose and acute pain. Over the 2-week ad libitum administration period results suggested pain reductions across participants using all forms of cannabis. However, trends suggested that more frequent use of CBD-dominant edible cannabis may be associated with greater reductions in perceived pain over the 2-week observation period (p = .07). Discussion: These findings support the short-term analgesic effects of THC and anxiolytic effects of CBD and further suggest that orally-administered THC and CBD should continue to be evaluated for the potential to provide both acute and extended relief from chronic low back pain. Clinical Trial Registration: https://clinicaltrials.gov/study/NCT03522324?locStr=Boulder,%20CO&country=United%20States&state=Colorado&city=Boulder&cond=chronic%20low%20back%20pain&intr=Cannabis&rank=1, identifier NCT03522324.

3.
PLoS One ; 19(9): e0308262, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39348366

RESUMEN

BACKGROUND: As cannabis legalization continues to spread across the United States, average Δ9-tetrahydrocannabinol concentrations in recreational products have significantly increased, and no prior study has evaluated effective treatments to reduce cannabis use among high potency cannabis users. Some research has found that the non-intoxicating cannabinoid cannabidiol reduces cannabis use and cannabis use disorder-related symptoms, such as affective disturbance and withdrawal. Results of these studies are promising but limited to synthetic or isolated forms of cannabidiol. OBJECTIVE: Conduct a placebo-controlled randomized control trial comparing the effects of hemp-derived cannabidiol on reducing Δ9-tetrahydrocannabinol use in concentrate users with cannabis use disorder. METHODS: Design. Double-blind, three-arm randomized placebo-controlled trial. Setting. University in the Denver-Boulder, CO, USA area. Study population. Community members who are heavy, stable cannabis concentrate users that meet criteria for at least moderate cannabis use disorder and are seeking to decrease or stop cannabis use. Data. Self-report demographics, substance use, and mental health characteristics, blood and urine based biomarkers and anthropometrics. Outcomes. Affective, physiological, and physical withdrawal symptoms, Δ9-tetrahydrocannabinol use. Analysis. Three-group ANOVAs and χ2 tests will be used to compare baseline variables between groups. Characteristics that differ between groups will be evaluated as potential covariates in subsequent analyses. A multilevel modeling framework will be used for primary outcome analysis to account for the repeated observations nested within participants over time. Pairwise post-hoc simple effects tests will be conducted to confirm patterns of differences. TRIAL REGISTRATION: ClinicalTrials.gov NCT06107062.


Asunto(s)
Cannabidiol , Cannabis , Abuso de Marihuana , Humanos , Cannabidiol/uso terapéutico , Método Doble Ciego , Abuso de Marihuana/tratamiento farmacológico , Cannabis/química , Masculino , Femenino , Dronabinol/uso terapéutico , Adulto
4.
Transl Psychiatry ; 14(1): 326, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112461

RESUMEN

People affected by psychotic, depressive and developmental disorders are at a higher risk for alcohol and tobacco use. However, the further associations between alcohol/tobacco use and symptoms/cognition in these disorders remain unexplored. We identified multimodal brain networks involving alcohol use (n = 707) and tobacco use (n = 281) via supervised multimodal fusion and evaluated if these networks affected symptoms and cognition in people with psychotic (schizophrenia/schizoaffective disorder/bipolar, n = 178/134/143), depressive (major depressive disorder, n = 260) and developmental (autism spectrum disorder/attention deficit hyperactivity disorder, n = 421/346) disorders. Alcohol and tobacco use scores were used as references to guide functional and structural imaging fusion to identify alcohol/tobacco use associated multimodal patterns. Correlation analyses between the extracted brain features and symptoms or cognition were performed to evaluate the relationships between alcohol/tobacco use with symptoms/cognition in 6 psychiatric disorders. Results showed that (1) the default mode network (DMN) and salience network (SN) were associated with alcohol use, whereas the DMN and fronto-limbic network (FLN) were associated with tobacco use; (2) the DMN and fronto-basal ganglia (FBG) related to alcohol/tobacco use were correlated with symptom and cognition in psychosis; (3) the middle temporal cortex related to alcohol/tobacco use was associated with cognition in depression; (4) the DMN related to alcohol/tobacco use was related to symptom, whereas the SN and limbic system (LB) were related to cognition in developmental disorders. In summary, alcohol and tobacco use were associated with structural and functional abnormalities in DMN, SN and FLN and had significant associations with cognition and symptoms in psychotic, depressive and developmental disorders likely via different brain networks. Further understanding of these relationships may assist clinicians in the development of future approaches to improve symptoms and cognition among psychotic, depressive and developmental disorders.


Asunto(s)
Trastornos Psicóticos , Uso de Tabaco , Humanos , Femenino , Masculino , Adulto , Trastornos Psicóticos/diagnóstico por imagen , Uso de Tabaco/efectos adversos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Adulto Joven , Trastorno Depresivo Mayor/diagnóstico por imagen , Persona de Mediana Edad , Imagen Multimodal , Consumo de Bebidas Alcohólicas/efectos adversos , Neuroimagen , Adolescente , Trastorno del Espectro Autista/diagnóstico por imagen
5.
Plants (Basel) ; 13(16)2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39204658

RESUMEN

A variety of techniques have been developed to extract hemp phytochemicals for research and consumption. Some of the most common processes in the industry include supercritical CO2 extraction, hydrodistillation, and solvent-based (ethanol) extractions. Each of these processes has the potential to differentially extract various phytochemicals, which would impact their efficacy, tolerability, and safety. However, despite these differences, there has been no direct comparison of the methods and the resulting phytochemical composition. This work aimed to compare cannabinoid and terpene profiles using the three primary commercial procedures, using hemp inflorescence from a CBD/CBG dominant Cannabis sativa L. cultivar. Extracts were then evaluated for their terpene and cannabinoid content using GC-MS and LC-MS/MS, respectively. Hydrodistilled extracts contained the most variety and abundance of terpenes with ß-caryophyllene to be the most concentrated terpene (25-42 mg/g). Supercritical CO2 extracts displayed a minimal variety of terpenes, but the most variety and abundance of cannabinoids with CBD ranging from 12.8-20.6 mg/g. Ethanol extracts contained the most acidic cannabinoids with 3.2-4.1 mg/g of CBDA along with minor terpene levels. The resulting extracts demonstrated substantially different chemical profiles and highlight how the process used to extract hemp can play a large role in product composition and potential biological effects.

7.
Front Neurosci ; 18: 1375440, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957186

RESUMEN

Introduction: Alcohol use disorder (AUD) is commonly associated with anxiety disorders and enhanced stress-sensitivity; symptoms that can worsen during withdrawal to perpetuate continued alcohol use. Alcohol increases neuroimmune activity in the brain. Our recent evidence indicates that alcohol directly modulates neuroimmune function in the central amygdala (CeA), a key brain region regulating anxiety and alcohol intake, to alter neurotransmitter signaling. We hypothesized that cannabinoids, such as cannabidiol (CBD) and ∆9-tetrahydrocannabinol (THC), which are thought to reduce neuroinflammation and anxiety, may have potential utility to alleviate alcohol withdrawal-induced stress-sensitivity and anxiety-like behaviors via modulation of CeA neuroimmune function. Methods: We tested the effects of CBD and CBD:THC (3:1 ratio) on anxiety-like behaviors and neuroimmune function in the CeA of mice undergoing acute (4-h) and short-term (24-h) withdrawal from chronic intermittent alcohol vapor exposure (CIE). We further examined the impact of CBD and CBD:THC on alcohol withdrawal behaviors in the presence of an additional stressor. Results: We found that CBD and 3:1 CBD:THC increased anxiety-like behaviors at 4-h withdrawal. At 24-h withdrawal, CBD alone reduced anxiety-like behaviors while CBD:THC had mixed effects, showing increased center time indicating reduced anxiety-like behaviors, but increased immobility time that may indicate increased anxiety-like behaviors. These mixed effects may be due to altered metabolism of CBD and THC during alcohol withdrawal. Immunohistochemical analysis showed decreased S100ß and Iba1 cell counts in the CeA at 4-h withdrawal, but not at 24-h withdrawal, with CBD and CBD:THC reversing alcohol withdrawal effects.. Discussion: These results suggest that the use of cannabinoids during alcohol withdrawal may lead to exacerbated anxiety depending on timing of use, which may be related to neuroimmune cell function in the CeA.

8.
Schizophr Res ; 270: 392-402, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38986386

RESUMEN

Recent microbiome-brain axis findings have shown evidence of the modulation of microbiome community as an environmental mediator in brain function and psychiatric illness. This work is focused on the role of the microbiome in understanding a rarely investigated environmental involvement in schizophrenia (SZ), especially in relation to brain circuit dysfunction. We leveraged high throughput microbial 16s rRNA sequencing and functional neuroimaging techniques to enable the delineation of microbiome-brain network links in SZ. N = 213 SZ and healthy control subjects were assessed for the oral microbiome. Among them, 139 subjects were scanned by resting-state functional magnetic resonance imaging (rsfMRI) to derive brain functional connectivity. We found a significant microbiome compositional shift in SZ beta diversity (weighted UniFrac distance, p = 6 × 10-3; Bray-Curtis distance p = 0.021). Fourteen microbial species involving pro-inflammatory and neurotransmitter signaling and H2S production, showed significant abundance alterations in SZ. Multivariate analysis revealed one pair of microbial and functional connectivity components showing a significant correlation of 0.46. Thirty five percent of microbial species and 87.8 % of brain functional network connectivity from each component also showed significant differences between SZ and healthy controls with strong performance in classifying SZ from healthy controls, with an area under curve (AUC) = 0.84 and 0.87, respectively. The results suggest a potential link between oral microbiome dysbiosis and brain functional connectivity alteration in relation to SZ, possibly through immunological and neurotransmitter signaling pathways and the hypothalamic-pituitary-adrenal axis, supporting for future work in characterizing the role of oral microbiome in mediating effects on SZ brain functional activity.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Microbiota , Boca , Esquizofrenia , Humanos , Esquizofrenia/fisiopatología , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/microbiología , Femenino , Masculino , Adulto , Microbiota/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Boca/microbiología , Boca/fisiopatología , Boca/diagnóstico por imagen , ARN Ribosómico 16S/genética , Conectoma , Persona de Mediana Edad , Descanso , Adulto Joven
9.
Front Pharmacol ; 15: 1282831, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38868665

RESUMEN

Background: The recent exponential increase in legalized medical and recreational cannabis, development of medical cannabis programs, and production of unregulated over-the-counter products (e.g., cannabidiol (CBD) oil, and delta-8-tetrahydrocannabinol (delta-8-THC)), has the potential to create unintended health consequences. The major cannabinoids (delta-9-tetrahydrocannabinol and cannabidiol) are metabolized by the same cytochrome P450 (CYP) enzymes that metabolize most prescription medications and xenobiotics (CYP3A4, CYP2C9, CYP2C19). As a result, we predict that there will be instances of drug-drug interactions and the potential for adverse outcomes, especially for prescription medications with a narrow therapeutic index. Methods: We conducted a systematic review of all years to 2023 to identify real world reports of documented cannabinoid interactions with prescription medications. We limited our search to a set list of medications with predicted narrow therapeutic indices that may produce unintended adverse drug reactions (ADRs). Our team screened 4,600 reports and selected 151 full-text articles to assess for inclusion and exclusion criteria. Results: Our investigation revealed 31 reports for which cannabinoids altered pharmacokinetics and/or produced adverse events. These reports involved 16 different Narrow Therapeutic Index (NTI) medications, under six drug classes, 889 individual subjects and 603 cannabis/cannabinoid users. Interactions between cannabis/cannabinoids and warfarin, valproate, tacrolimus, and sirolimus were the most widely reported and may pose the greatest risk to patients. Common ADRs included bleeding risk, altered mental status, difficulty inducing anesthesia, and gastrointestinal distress. Additionally, we identified 18 instances (58%) in which clinicians uncovered an unexpected serum level of the prescribed drug. The quality of pharmacokinetic evidence for each report was assessed using an internally developed ten-point scale. Conclusion: Drug-drug interactions with cannabinoids are likely amongst prescription medications that use common CYP450 systems. Our findings highlight the need for healthcare providers and patients/care-givers to openly communicate about cannabis/cannabinoid use to prevent unintended adverse events. To that end, we have developed a free online tool (www.CANN-DIR.psu.edu) to help identify potential cannabinoid drug-drug interactions with prescription medications.

10.
Front Pharmacol ; 15: 1398409, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855747

RESUMEN

Pain is a major issue in healthcare throughout the world. It remains one of the major clinical issues of our time because it is a common sequela of numerous conditions, has a tremendous impact on individual quality of life, and is one of the top drivers of cost in medicine, due to its influence on healthcare expenditures and lost productivity in those affected by it. Patients and healthcare providers remain desperate to find new, safer and more effective analgesics. Growing evidence indicates that the voltage-gated sodium channel Nav1.8 plays a critical role in transmission of pain-related signals throughout the body. For that reason, this channel appears to have strong potential to help develop novel, more selective, safer, and efficacious analgesics. However, many questions related to the physiology, function, and clinical utility of Nav1.8 remain to be answered. In this article, we discuss the latest studies evaluating the role of Nav1.8 in pain, with a particular focus on visceral pain, as well as the steps taken thus far to evaluate its potential as an analgesic target. We also review the limitations of currently available studies related to this topic, and describe the next scientific steps that have already been undertaken, or that will need to be pursued, to fully unlock the capabilities of this potential therapeutic target.

11.
J Pharmacol Exp Ther ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777605

RESUMEN

There is a growing interest in the use of medicinal plants to treat a variety of diseases, and one of the most commonly used medicinal plants globally is Cannabis sativa The two most abundant cannabinoids (Δ9-tetrahydrocannabinol and cannabidiol) have been governmentally approved to treat selected medical conditions; however, the plant produces over 100 cannabinoids, including cannabichromene (CBC). While the cannabinoids share a common precursor molecule, cannabigerol, they are structurally and pharmacologically unique. These differences may engender differing therapeutic potentials. In this review, we will examine what is currently known about CBC with regards to pharmacodynamics, pharmacokinetics, and receptor profile. We will also discuss the therapeutic areas that have been examined for this cannabinoid, notably antinociceptive, antibacterial, and anti-seizure activities. Finally, we will discuss areas where new research is needed and potential novel medicinal applications for CBC. Significance Statement Cannabichromene (CBC) has been suggested to have disparate therapeutic benefits such as anti-inflammatory, anticonvulsant, antibacterial, and antinociceptive effects. Most of the focus on the medical benefits of cannabinoids has been focused on THC and CBD. The preliminary studies on CBC indicate that this phytocannabinoid may have unique therapeutic potential that warrants further investigation. Following easier access to hemp, CBC products are commercially available over-the-counter and are being widely utilized with little or no evidence of their safety or efficacy.

12.
Chem Res Toxicol ; 37(6): 991-999, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38778043

RESUMEN

Electronic (e-) cigarette formulations containing nicotine salts from a range of organic acid conjugates and pH values have dominated the commercial market. The acids in the nicotine salt formulations may alter the redox environment in e-cigarettes, impacting free radical formation in e-cigarette aerosol. Here, the generation of aerosol mass and free radicals from a fourth-generation e-cigarette device was evaluated at 2 wt % nicotine salts (pH 7, 30:70 mixture propylene glycol to vegetable glycerin) across eight organic acids used in e-liquids: benzoic acid (BA), salicylic acid (SLA), lactic acid (LA), levulinic acid (LVA), succinic acid (SA), malic acid (MA), tartaric acid (TA), and citric acid (CA). Furthermore, 2 wt % BA nicotine salts were studied at the following nicotine to acid ratios: 1:2 (pH 4), 1:1 (pH 7), and 2:1 (pH 8), in comparison with freebase nicotine (pH 10). Radical yields were quantified by spin-trapping and electron paramagnetic resonance (EPR) spectroscopy. The EPR spectra of free radicals in the nicotine salt aerosol matched those generated from the Fenton reaction, which are primarily hydroxyl (OH) radicals and other reactive oxygen species (ROS). Although the aerosol mass formation was not significantly different for most of the tested nicotine salts and acid concentrations, notable ROS yields were observed only from BA, CA, and TA under the study conditions. The e-liquids with SLA, LA, LVA, SA, and MA produced less ROS than the 2 wt % freebase nicotine e-liquid, suggesting that organic acids may play dual roles in the production and scavenging of ROS. For BA nicotine salts, it was found that the ROS yield increased with a higher acid concentration (or a lower nicotine to acid ratio). The observation that BA nicotine salts produce the highest ROS yield in aerosol generated from a fourth-generation vape device, which increases with acid concentration, has important implications for ROS-mediated health outcomes that may be relevant to consumers, manufacturers, and regulatory agencies.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Nicotina , Vapeo , Nicotina/análisis , Nicotina/química , Radicales Libres/química , Radicales Libres/análisis , Vapeo/efectos adversos , Sales (Química)/química , Sales (Química)/análisis , Soluciones , Ácido Benzoico/química , Ácido Benzoico/análisis , Ácidos Levulínicos/química , Ácidos Levulínicos/análisis , Malatos
14.
Microcirculation ; 31(6): e12871, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38805589

RESUMEN

OBJECTIVE: This study aimed to determine nicotine's impact on receptor-mediated cyclic adenosine monophosphate (cAMP) synthesis in vascular smooth muscle (VSM). We hypothesize that nicotine impairs ß adrenergic-mediated cAMP signaling in VSM, leading to altered vascular reactivity. METHODS: The effects of nicotine on cAMP signaling and vascular function were systematically tested in aortic VSM cells and acutely isolated aortas from mice expressing the cAMP sensor TEpacVV (Camper), specifically in VSM (e.g., CamperSM). RESULTS: Isoproterenol (ISO)-induced ß-adrenergic production of cAMP in VSM was significantly reduced in cells from second-hand smoke (SHS)-exposed mice and cultured wild-type VSM treated with nicotine. The decrease in cAMP synthesis caused by nicotine was verified in freshly isolated arteries from a mouse that had cAMP sensor expression in VSM (e.g., CamperSM mouse). Functionally, the changes in cAMP signaling in response to nicotine hindered ISO-induced vasodilation, but this was reversed by immediate PDE3 inhibition. CONCLUSIONS: These results imply that nicotine alters VSM ß adrenergic-mediated cAMP signaling and vasodilation, which may contribute to the dysregulation of vascular reactivity and the development of vascular complications for nicotine-containing product users.


Asunto(s)
AMP Cíclico , Músculo Liso Vascular , Nicotina , Transducción de Señal , Animales , Nicotina/farmacología , AMP Cíclico/metabolismo , Ratones , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Isoproterenol/farmacología , Masculino , Aorta/metabolismo , Aorta/efectos de los fármacos , Células Cultivadas
15.
Sci Adv ; 10(15): eadf7001, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38608030

RESUMEN

Genes implicated in translation control have been associated with autism spectrum disorders (ASDs). However, some important genetic causes of autism, including the 16p11.2 microdeletion, bear no obvious connection to translation. Here, we use proteomics, genetics, and translation assays in cultured cells and mouse brain to reveal altered translation mediated by loss of the kinase TAOK2 in 16p11.2 deletion models. We show that TAOK2 associates with the translational machinery and functions as a translational brake by phosphorylating eukaryotic elongation factor 2 (eEF2). Previously, all signal-mediated regulation of translation elongation via eEF2 phosphorylation was believed to be mediated by a single kinase, eEF2K. However, we show that TAOK2 can directly phosphorylate eEF2 on the same regulatory site, but functions independently of eEF2K signaling. Collectively, our results reveal an eEF2K-independent signaling pathway for control of translation elongation and suggest altered translation as a molecular component in the etiology of some forms of ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Ursidae , Animales , Ratones , Trastorno Autístico/genética , Factor 2 de Elongación Peptídica , Fosforilación , Trastorno del Espectro Autista/genética , Bioensayo
16.
Artículo en Inglés | MEDLINE | ID: mdl-38608236

RESUMEN

Objective: Cannabis has been touted for a host of pharmacological and therapeutic effects and users commonly report reduced symptoms of physical and mental health conditions, including anxiety, depression, and chronic pain. While there is existing empirical evidence supporting these effects of cannabis use, little is known about the extent to which these effects result from pharmacological versus expectancy factors. We evaluated the associations between participants' cannabis expectancies and their acute self-reported reactions after using legal market forms of cannabis with varying levels of cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) in three domains: anxiety, depression, and pain. Methods: Fifty-five flower and 101 edible cannabis users were randomly assigned and asked to purchase at a local dispensary one of three products containing varying levels of CBD and THC. Participants completed a baseline assessment where they reported expectancies about general health effects of cannabis use and an experimental mobile laboratory assessment where they administered their assigned products. Edible users also reported their domain-specific expectancies about cannabis use in improving anxiety, depression, and pain. Following administration, participants completed acute indicators of anxiety, depression, and pain operationalized through subjective acute tension, elation, and a single-item measure of pain. Results: Among flower users, more positive expectancies for cannabis to improve general health were correlated with greater reductions in tension at acute post-use. This finding was replicated among edible users. Unlike flower users, more positive expectancies for cannabis to improve general health were also correlated with greater increases in elation and greater reductions in pain among edible users. More positive expectancies for cannabis to improve depression and pain were also correlated with greater increases in elation and greater reductions in pain, respectively, among edible users. Conclusions: Cannabis users' expectancies significantly impacted some of the acute subjective effects of legal market cannabis products. Among both flower and edible users, consistent, significant expectancy effects were found. Results were consistent with prior findings and demonstrate the need to measure and control pre-existing expectancies in future research that involves cannabis administration. Clinical trial registration number: NCT03522103.

17.
Med Cannabis Cannabinoids ; 7(1): 10-18, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38352661

RESUMEN

Background: In this review, we summarize current scientific knowledge on psychoactive cannabinoids synthesized from cannabidiol (CBD) and sold in the semi-legal market established in response to the passage of the US Agriculture Improvement Act of 2018, commonly known as the 2018 Farm Bill. The discussion focuses on recent developments that suggest this unregulated market may be fertile ground for a potential health crisis. Summary: Current research into CBD-derived cannabinoids is mainly limited to Δ8-tetrahydrocannabinol (Δ8-THC) products, with some recent publications beginning to explore O-acetyl-THC, a term describing the acetate ester of Δ8-THC or Δ9-THC, and its potential pulmonary toxicity. We advance the discussion on the CBD-derived cannabinoid market, shedding light on the introduction and associated dangers of novel cannabinoids, likely produced via fully synthetic routes using sidechain variants of CBD, with purportedly greater agonist activity at the human cannabinoid receptor 1 (as a source of euphorigenic activity) than Δ9-THC. We discuss the expanded incorporation of the acetate ester motif into other THC analogues. We also discuss the lack of regulatory oversight for the production of CBD-derived cannabinoids and the unlabeled presence of under-researched cannabinoids formed as reaction side products in the CBD-derived cannabinoid products being sold. Accordingly, we suggest approaches to monitoring the CBD-derived cannabinoid market and investigating the pharmacology of the cannabinoids being consumed. Finally, important epidemiological findings are discussed and future directions for research are suggested to call investigators to this critically understudied field. Key Messages: The CBD-derived cannabinoid market is growing internationally, and the market has diversified to include potent synthetic cannabinoids. The products sold on this unregulated market are under-researched despite growing availability and consumer interest. Ernest investigation of the pharmacology of these novel cannabinoids and the contents of CBD-derived cannabinoid products is critical for monitoring this potential source of another vaping-related epidemic.

18.
Neurogastroenterol Motil ; 36(3): e14748, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38263802

RESUMEN

BACKGROUND: Silent inflammatory bowel disease (IBD) is a condition in which individuals with the active disease experience minor to no pain. Voltage-gated Na+ (NaV ) channels expressed in sensory neurons play a major role in pain perception. Previously, we reported that a NaV 1.8 genetic polymorphism (A1073V, rs6795970) was more common in a cohort of silent IBD patients. The expression of this variant (1073V) in rat sympathetic neurons activated at more depolarized potentials when compared to the more common variant (1073A). In this study, we investigated whether expression of either NaV 1.8 variant in rat sensory neurons would exhibit different biophysical characteristics than previously observed in sympathetic neurons. METHODS: Endogenous NaV 1.8 channels were first silenced in DRG neurons and then either 1073A or 1073V human NaV 1.8 cDNA constructs were transfected. NaV 1.8 currents were recorded with the whole-cell patch-clamp technique. KEY RESULTS: The results indicate that 1073A and 1073V NaV 1.8 channels exhibited similar activation values. However, the slope factor (k) for activation determined for this same group of neurons decreased by 5 mV, suggesting an increase in voltage sensitivity. Comparison of inactivation parameters indicated that 1073V channels were shifted to more depolarized potentials than 1073A-expressing neurons, imparting a proexcitatory characteristic. CONCLUSIONS AND INFERENCES: These findings differ from previous observations in other expression models and underscore the challenges with heterologous expression systems. Therefore, the use of human sensory neurons derived from induced pluripotent stem cells may help address these inconsistencies and better determine the effect of the polymorphism present in IBD patients.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Células Receptoras Sensoriales , Animales , Humanos , Ratas , Enfermedades Inflamatorias del Intestino/metabolismo , Dolor/metabolismo , Células Receptoras Sensoriales/metabolismo
19.
Sci Rep ; 14(1): 1060, 2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212393

RESUMEN

Antidepressant medications (AMs) are frequently used in inflammatory bowel disease (IBD). Many AMs enhance serotonin (5-HT) availability, but this phenomenon may actually worsen IBD. We hypothesized that use of 5-HT-enhancing AMs would be associated with poor clinical outcomes in these disorders. We performed a retrospective cohort study using the Merative Health Marketscan® commercial claims database between 1/1/05 and 12/31/14. Participants (18-63 years) were either controls or had ≥ 2 ICD-9 diagnoses for IBD with ≥ 1 year of continuous insurance enrollment before index diagnosis and 2 years after. We identified new AM prescriptions using the medication possession ratio. Primary outcomes were corticosteroid use (IBD-only), IBD-related complication (IBD-only), IBD-related surgery (IBD-only), hospitalization, and emergency department (ED) visit(s) within 2 years of diagnosis or starting AM. We calculated adjusted hazard ratios (aHRs) in IBD AM users (for each outcome). We also performed subgroup analyses considering IBD and AM subtype. In the IBD cohort (n = 29,393, 41.4% female; 42.2%CD), 5.2% used AMs. In IBD, AM use was independently associated with corticosteroid use, ED visits, and hospitalizations, but not IBD-related complications. AM use was associated with a decreased risk of surgery. In the control cohort (n = 29,393, 41.4% female), AM use was also independently associated with ED visits and hospitalizations, and there was an increased likelihood of these two outcomes compared to the IBD cohort. In conclusion, while AM use was independently associated with an increased risk of ED visits and hospitalization in IBD, these risks were statistically more common in a matched control cohort. Additionally, AM use was associated with reduced risk of surgery in IBD, demonstrating a potential protective role in this setting.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Serotonina , Humanos , Femenino , Masculino , Estudios Retrospectivos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/complicaciones , Hospitalización , Antidepresivos/efectos adversos , Corticoesteroides/uso terapéutico
20.
Cell Biosci ; 14(1): 1, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167156

RESUMEN

BACKGROUND AND AIMS: Previously, we found that FK506 binding protein 51 (Fkbp51) knockout (KO) mice resist high fat diet-induced fatty liver and alcohol-induced liver injury. The aim of this research is to identify the mechanism of Fkbp51 in liver injury. METHODS: Carbon tetrachloride (CCl4)-induced liver injury was compared between Fkbp51 KO and wild type (WT) mice. Step-wise and in-depth analyses were applied, including liver histology, biochemistry, RNA-Seq, mitochondrial respiration, electron microscopy, and molecular assessments. The selective FKBP51 inhibitor (SAFit2) was tested as a potential treatment to ameliorate liver injury. RESULTS: Fkbp51 knockout mice exhibited protection against liver injury, as evidenced by liver histology, reduced fibrosis-associated markers and lower serum liver enzyme levels. RNA-seq identified differentially expressed genes and involved pathways, such as fibrogenesis, inflammation, mitochondria, and oxidative metabolism pathways and predicted the interaction of FKBP51, Parkin, and HSP90. Cellular studies supported co-localization of Parkin and FKBP51 in the mitochondrial network, and Parkin was shown to be expressed higher in the liver of KO mice at baseline and after liver injury relative to WT. Further functional analysis identified that KO mice exhibited increased ATP production and enhanced mitochondrial respiration. KO mice have increased mitochondrial size, increased autophagy/mitophagy and mitochondrial-derived vesicles (MDV), and reduced reactive oxygen species (ROS) production, which supports enhancement of mitochondrial quality control (MQC). Application of SAFit2, an FKBP51 inhibitor, reduced the effects of CCl4-induced liver injury and was associated with increased Parkin, pAKT, and ATP production. CONCLUSIONS: Downregulation of FKBP51 represents a promising therapeutic target for liver disease treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...