Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
PLoS One ; 19(4): e0302464, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38662664

RESUMEN

BACKGROUND: Although COVID-19 infection has been associated with a number of clinical and environmental risk factors, host genetic variation has also been associated with the incidence and morbidity of infection. The CRP gene codes for a critical component of the innate immune system and CRP variants have been reported associated with infectious disease and vaccination outcomes. We investigated possible associations between COVID-19 outcome and a limited number of candidate gene variants including rs1205. METHODOLOGY/PRINCIPAL FINDINGS: The Strong Heart and Strong Heart Family studies have accumulated detailed genetic, cardiovascular risk and event data in geographically dispersed American Indian communities since 1988. Genotypic data and 91 COVID-19 adjudicated deaths or hospitalizations from 2/1/20 through 3/1/23 were identified among 3,780 participants in two subsets. Among 21 candidate variants including genes in the interferon response pathway, APOE, TMPRSS2, TLR3, the HLA complex and the ABO blood group, only rs1205, a 3' untranslated region variant in the CRP gene, showed nominally significant association in T-dominant model analyses (odds ratio 1.859, 95%CI 1.001-3.453, p = 0.049) after adjustment for age, sex, center, body mass index, and a history of cardiovascular disease. Within the younger subset, association with the rs1205 T-Dom genotype was stronger, both in the same adjusted logistic model and in the SOLAR analysis also adjusting for other genetic relatedness. CONCLUSION: A T-dominant genotype of rs1205 in the CRP gene is associated with COVID-19 death or hospitalization, even after adjustment for relevant clinical factors and potential participant relatedness. Additional study of other populations and genetic variants of this gene are warranted.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/genética , COVID-19/epidemiología , COVID-19/mortalidad , COVID-19/virología , Femenino , Masculino , Persona de Mediana Edad , SARS-CoV-2/genética , Anciano , Polimorfismo de Nucleótido Simple , Adulto , Proteína C-Reactiva/genética , Predisposición Genética a la Enfermedad , Factores de Riesgo , Genotipo , Hospitalización , Variación Genética
2.
Circ Res ; 131(2): e51-e69, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35658476

RESUMEN

BACKGROUND: Epigenetic dysregulation has been proposed as a key mechanism for arsenic-related cardiovascular disease (CVD). We evaluated differentially methylated positions (DMPs) as potential mediators on the association between arsenic and CVD. METHODS: Blood DNA methylation was measured in 2321 participants (mean age 56.2, 58.6% women) of the Strong Heart Study, a prospective cohort of American Indians. Urinary arsenic species were measured using high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry. We identified DMPs that are potential mediators between arsenic and CVD. In a cross-species analysis, we compared those DMPs with differential liver DNA methylation following early-life arsenic exposure in the apoE knockout (apoE-/-) mouse model of atherosclerosis. RESULTS: A total of 20 and 13 DMPs were potential mediators for CVD incidence and mortality, respectively, several of them annotated to genes related to diabetes. Eleven of these DMPs were similarly associated with incident CVD in 3 diverse prospective cohorts (Framingham Heart Study, Women's Health Initiative, and Multi-Ethnic Study of Atherosclerosis). In the mouse model, differentially methylated regions in 20 of those genes and DMPs in 10 genes were associated with arsenic. CONCLUSIONS: Differential DNA methylation might be part of the biological link between arsenic and CVD. The gene functions suggest that diabetes might represent a relevant mechanism for arsenic-related cardiovascular risk in populations with a high burden of diabetes.


Asunto(s)
Arsénico , Aterosclerosis , Enfermedades Cardiovasculares , Animales , Apolipoproteínas E , Arsénico/toxicidad , Aterosclerosis/inducido químicamente , Aterosclerosis/genética , Enfermedades Cardiovasculares/inducido químicamente , Enfermedades Cardiovasculares/genética , Metilación de ADN , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Estudios Prospectivos
3.
Adipocyte ; 9(1): 153-169, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32272872

RESUMEN

Interactions between macrophages and adipocytes are early molecular factors influencing adipose tissue (AT) dysfunction, resulting in high leptin, low adiponectin circulating levels and low-grade metaflammation, leading to insulin resistance (IR) with increased cardiovascular risk. We report the characterization of AT dysfunction through measurements of the adiponectin/leptin ratio (ALR), the adipo-insulin resistance index (Adipo-IRi), fasting/postprandial (F/P) immunometabolic phenotyping and direct F/P differential gene expression in AT biopsies obtained from symptom-free adults from the GEMM family study. AT dysfunction was evaluated through associations of the ALR with F/P insulin-glucose axis, lipid-lipoprotein metabolism, and inflammatory markers. A relevant pattern of negative associations between decreased ALR and markers of systemic low-grade metaflammation, HOMA, and postprandial cardiovascular risk hyperinsulinemic, triglyceride and GLP-1 curves was found. We also analysed their plasma non-coding microRNAs and shotgun lipidomics profiles finding trends that may reflect a pattern of adipose tissue dysfunction in the fed and fasted state. Direct gene differential expression data showed initial patterns of AT molecular signatures of key immunometabolic genes involved in AT expansion, angiogenic remodelling and immune cell migration. These data reinforce the central, early role of AT dysfunction at the molecular and systemic level in the pathogenesis of IR and immunometabolic disorders.


Asunto(s)
Tejido Adiposo/metabolismo , Medicina de Precisión , Adulto , Estudios de Cohortes , Ayuno , Femenino , Humanos , Resistencia a la Insulina , Lípidos/sangre , Masculino , Fenotipo , Factores de Riesgo
4.
Genes (Basel) ; 10(5)2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31067764

RESUMEN

BACKGROUND: Congenital leptin deficiency is a recessive genetic disorder associated with severe early-onset obesity. It is caused by mutations in the leptin (LEP) gene, which encodes the protein product leptin. These mutations may cause nonsense-mediated mRNA decay, defective secretion or the phenomenon of biologically inactive leptin, but typically lead to an absence of circulating leptin, resulting in a rare type of monogenic extreme obesity with intense hyperphagia, and serious metabolic abnormalities. METHODS: We present two severely obese sisters from Colombia, members of the same lineal consanguinity. Their serum leptin was measured by MicroELISA. DNA sequencing was performed on MiSeq equipment (Illumina) of a next-generation sequencing (NGS) panel involving genes related to severe obesity, including LEP. RESULTS: Direct sequencing of the coding region of LEP gene in the sisters revealed a novel homozygous missense mutation in exon 3 [NM_002303.3], C350G>T [p.C117F]. Detailed information and clinical measurements of these sisters were also collected. Their serum leptin levels were undetectable despite their markedly elevated fat mass. CONCLUSIONS: The mutation of LEP, absence of detectable leptin, and the severe obesity found in these sisters provide the first evidence of monogenic leptin deficiency reported in the continents of North and South America.


Asunto(s)
Leptina/genética , Mutación Missense/genética , Obesidad Mórbida/genética , Adulto , Colombia , Consanguinidad , Exones/genética , Femenino , Humanos , Leptina/deficiencia , Obesidad Mórbida/fisiopatología , Linaje , Hermanos
5.
Genes (Basel) ; 9(11)2018 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-30400254

RESUMEN

Cardiovascular disease (CVD) and type 2 diabetes (T2D) are increasing worldwide. This is mainly due to an unhealthy nutrition, implying that variation in CVD risk may be due to variation in the capacity to manage a nutritional load. We examined the genomic basis of postprandial metabolism. Our main purpose was to introduce the GEMM Family Study (Genetics of Metabolic Diseases in Mexico) as a multi-center study carrying out an ongoing recruitment of healthy urban adults. Each participant received a mixed meal challenge and provided a 5-hours' time course series of blood, buffy coat specimens for DNA isolation, and adipose tissue (ADT)/skeletal muscle (SKM) biopsies at fasting and 3 h after the meal. A comprehensive profiling, including metabolomic signatures in blood and transcriptomic and proteomic profiling in SKM and ADT, was performed to describe tendencies for variation in postprandial response. Our data generation methods showed preliminary trends indicating that by characterizing the dynamic properties of biomarkers with metabolic activity and analyzing multi-OMICS data it could be possible, with this methodology and research design, to identify early trends for molecular biology systems and genes involved in the fasted and fed states.

6.
Front Genet ; 9: 466, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30369944

RESUMEN

Background: Genetic research may inform underlying mechanisms for disparities in the burden of type 2 diabetes mellitus among American Indians. Our objective was to assess the association of genetic variants in cardiometabolic candidate genes with B cell dysfunction via HOMA-B, insulin resistance via HOMA-IR, and type 2 diabetes mellitus in the Strong Heart Family Study (SHFS). Methods and Results: We examined the association of variants, previously associated with cardiometabolic traits (∼200,000 from Illumina Cardio MetaboChip), using mixed models of HOMA-B residuals corrected for HOMA-IR (cHOMA-B), log transformed HOMA-IR, and incident diabetes, adjusted for age, sex, population stratification, and familial relatedness. Center-specific estimates were combined using fixed effect meta-analyses. We used Bonferroni correction to account for multiple testing (P < 4.13 × 10-7). We also assessed the association between variants in candidate diabetes genes with these metabolic traits. We explored the top SNPs in an independent, replication sample from Southwestern Arizona. We identified significant associations with cHOMA-B for common variants at 26 loci of which 8 were novel (PRSS7, FCRL5, PEL1, LRP12, IGLL1, ARHGEF10, PARVA, FLJ16686). The most significant variant association with cHOMA-B was observed on chromosome 5 for an intergenic variant near PARP8 (rs2961831, P = 6.39 × 10-9). In the replication study, we found a signal at rs4607517 near GCK/YKT6 (P = 0.01). Variants near candidate diabetes genes (especially GCK and KCNQ1) were also nominally associated with HOMA-IR and cHOMA-B. Conclusion: We identified variants at novel loci and confirmed those at known candidate diabetes loci associations for cHOMA-B. This study also provided evidence for association of variants at KCNQ2, CTNAA2, and KCNQ1with cHOMA-B among American Indians. Further studies are needed to account for the high heritability of diabetes among the American Indian participants of the SHFS cohort.

7.
Gene Ther ; 25(7): 497-509, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30072816

RESUMEN

Here we present our progress in inducing an ectopic brown adipose tissue (BAT) phenotype in skeletal muscle (SKM) as a potential gene therapy for obesity and its comorbidities. We used ultrasound-targeted microbubble destruction (UTMD), a novel targeted, non-viral approach to gene therapy, to deliver genes in the BAT differentiation pathway into rodent SKM to engineer a thermogenic BAT phenotype with ectopic mUCP-1 overexpression. In parallel, we performed a second protocol using wild-type Ucp-1-null knockout mice to test whether the effects of the gene therapy are UCP-1 dependent. Our main findings were a robust cellular presence of mUCP-1 immunostaining (IHC), significantly higher expression levels of mUCP-1 measured by qRT-PCR, and highest temperature elevation measured by infrared thermography in the treated thigh, achieved in rats after delivering the UTMD-PRDM16/PGC-1a/BMP7/hyPB gene cocktail. Interestingly, the weight loss obtained in the treated rats with the triple gene delivery, never recovered the levels observed in the controls in spite of food intake recovery. Our results establish the feasibility of minimally invasive UTMD gene-based therapy administration in SKM, to induce overexpression of ectopic mUCP-1 after delivery of the thermogenic BAT gene program, and describe systemic effects of this intervention on food intake, weight loss, and thermogenesis.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Terapia Genética , Obesidad/terapia , Proteína Desacopladora 1/genética , Tejido Adiposo Pardo/trasplante , Animales , Ingestión de Alimentos/genética , Regulación de la Expresión Génica , Ratones , Ratones Noqueados , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Ratas , Termogénesis/genética , Proteína Desacopladora 1/administración & dosificación
8.
IUBMB Life ; 69(9): 745-755, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28762248

RESUMEN

Ultrasound-targeted microbubble destruction (UTMD) is a novel means of tissue-specific gene delivery. This approach systemically infuses transgenes precoupled to gas-filled lipid microbubbles that are burst within the microvasculature of target tissues via an ultrasound signal resulting in release of DNA and transfection of neighboring cells within the tissue. Previous work has shown that adenovirus containing cDNA of UCP-1, injected into the epididymal fat pads in mice, induced localized fat depletion, improving glucose tolerance, and decreasing food intake in obese diabetic mice. Our group recently demonstrated that gene therapy by UTMD achieved beta cell regeneration in streptozotocin (STZ)-treated mice and baboons. We hypothesized that gene therapy with BMP7/PRDM16/PPARGC1A in skeletal muscle (SKM) of obese Zucker diabetic fatty (fa/fa) rats using UTMD technology would produce a brown adipose tissue (BAT) phenotype with UCP-1 overexpression. This study was designed as a proof of concept (POC) project. Obese Zucker rats were administered plasmid cDNA contructs encoding a gene cocktail with BMP7/PRDM16/PPARGC1A incorporated within microbubbles and intravenously delivered into their left thigh. Controls received UTMD with plasmids driving a DsRed reporter gene. An ultrasound transducer was directed to the thigh to disrupt the microbubbles within the microcirculation. Blood samples were drawn at baseline, and after treatment to measure glucose, insulin, and free fatty acids levels. SKM was harvested for immunohistochemistry (IHC). Our IHC results showed a reliable pattern of effective UTMD-based gene delivery in enhancing SKM overexpression of the UCP-1 gene. This clearly indicates that our plasmid DNA construct encoding the gene combination of PRDM16, PPARGC1A, and BMP7 reprogrammed adult SKM tissue into brown adipose cells in vivo. Our pilot established POC showing that the administration of the gene cocktail to SKM in this rat model of genetic obesity using UTMD gene therapy, engineered a BAT phenotype with UCP-1 over-expression. © 2017 IUBMB Life, 69(9):745-755, 2017.


Asunto(s)
Reprogramación Celular/genética , Diabetes Mellitus Experimental/terapia , Técnicas de Transferencia de Gen , Terapia Genética , Obesidad/terapia , Tejido Adiposo Pardo/metabolismo , Animales , Proteína Morfogenética Ósea 7/genética , Diferenciación Celular/genética , Diabetes Mellitus Experimental/genética , Modelos Animales de Enfermedad , Humanos , Microburbujas/uso terapéutico , Músculo Esquelético/metabolismo , Músculo Esquelético/trasplante , Obesidad/genética , Obesidad/fisiopatología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Plásmidos/genética , Plásmidos/uso terapéutico , Ratas , Ratas Zucker , Factores de Transcripción/genética
9.
Obesity (Silver Spring) ; 25(7): 1270-1276, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28508493

RESUMEN

OBJECTIVE: To perform whole exome sequencing in 928 Hispanic children and identify variants and genes associated with childhood obesity. METHODS: Single-nucleotide variants (SNVs) were identified from Illumina whole exome sequencing data using integrated read mapping, variant calling, and an annotation pipeline (Mercury). Association analyses of 74 obesity-related traits and exonic variants were performed using SeqMeta software. Rare autosomal variants were analyzed using gene-based association analyses, and common autosomal variants were analyzed at the SNV level. RESULTS: (1) Rare exonic variants in 10 genes and 16 common SNVs in 11 genes that were associated with obesity traits in a cohort of Hispanic children were identified, (2) novel rare variants in peroxisome biogenesis factor 1 (PEX1) associated with several obesity traits (weight, weight z score, BMI, BMI z score, waist circumference, fat mass, trunk fat mass) were discovered, and (3) previously reported SNVs associated with childhood obesity were replicated. CONCLUSIONS: Convergence of whole exome sequencing, a family-based design, and extensive phenotyping discovered novel rare and common variants associated with childhood obesity. Linking PEX1 to obesity phenotypes poses a novel mechanism of peroxisomal biogenesis and metabolism underlying the development of childhood obesity.


Asunto(s)
Exoma , Sitios Genéticos , Hispánicos o Latinos/genética , Obesidad Infantil/genética , Análisis de Secuencia de ADN , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Adolescente , Índice de Masa Corporal , Peso Corporal , Niño , Preescolar , Estudios de Cohortes , Estudio de Asociación del Genoma Completo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Obesidad Infantil/etnología , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Programas Informáticos , Circunferencia de la Cintura , Adulto Joven
10.
Nat Genet ; 49(1): 125-130, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27918534

RESUMEN

Variation in body fat distribution contributes to the metabolic sequelae of obesity. The genetic determinants of body fat distribution are poorly understood. The goal of this study was to gain new insights into the underlying genetics of body fat distribution by conducting sample-size-weighted fixed-effects genome-wide association meta-analyses in up to 9,594 women and 8,738 men of European, African, Hispanic and Chinese ancestry, with and without sex stratification, for six traits associated with ectopic fat (hereinafter referred to as ectopic-fat traits). In total, we identified seven new loci associated with ectopic-fat traits (ATXN1, UBE2E2, EBF1, RREB1, GSDMB, GRAMD3 and ENSA; P < 5 × 10-8; false discovery rate < 1%). Functional analysis of these genes showed that loss of function of either Atxn1 or Ube2e2 in primary mouse adipose progenitor cells impaired adipocyte differentiation, suggesting physiological roles for ATXN1 and UBE2E2 in adipogenesis. Future studies are necessary to further explore the mechanisms by which these genes affect adipocyte biology and how their perturbations contribute to systemic metabolic disease.


Asunto(s)
Adipocitos/citología , Distribución de la Grasa Corporal , Diferenciación Celular , Sitios Genéticos/genética , Marcadores Genéticos/genética , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple/genética , Adipocitos/metabolismo , Animales , Estudios de Cohortes , Etnicidad/genética , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/genética , Fenotipo
11.
Addiction ; 112(1): 113-123, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27517884

RESUMEN

BACKGROUND AND AIMS: While the prevalence of major depression is elevated among cannabis users, the role of genetics in this pattern of comorbidity is not clear. This study aimed to estimate the heritability of cannabis use and major depression, quantify the genetic overlap between these two traits and localize regions of the genome that segregate in families with cannabis use and major depression. DESIGN: Family-based univariate and bivariate genetic analysis. SETTING: San Antonio, Texas, USA. PARTICIPANTS: Genetics of Brain Structure and Function study (GOBS) participants: 1284 Mexican Americans from 75 large multi-generation families and an additional 57 genetically unrelated spouses. MEASUREMENTS: Phenotypes of life-time history of cannabis use and major depression, measured using the semistructured MINI-Plus interview. Genotypes measured using ~1 M single nucleotide polymorphisms (SNPs) on Illumina BeadChips. A subselection of these SNPs were used to build multi-point identity-by-descent matrices for linkage analysis. FINDINGS: Both cannabis use [h2  = 0.614, P = 1.00 × 10-6 , standard error (SE) = 0.151] and major depression (h2  = 0.349, P = 1.06 × 10-5 , SE = 0.100) are heritable traits, and there is significant genetic correlation between the two (ρg  = 0.424, P = 0.0364, SE = 0.195). Genome-wide linkage scans identify a significant univariate linkage peak for major depression on chromosome 22 [logarithm of the odds (LOD) = 3.144 at 2 centimorgans (cM)], with a suggestive peak for cannabis use on chromosome 21 (LOD = 2.123 at 37 cM). A significant pleiotropic linkage peak influencing both cannabis use and major depression was identified on chromosome 11 using a bivariate model (LOD = 3.229 at 112 cM). Follow-up of this pleiotropic signal identified a SNP 20 kb upstream of NCAM1 (rs7932341) that shows significant bivariate association (P = 3.10 × 10-5 ). However, this SNP is rare (seven minor allele carriers) and does not drive the linkage signal observed. CONCLUSIONS: There appears to be a significant genetic overlap between cannabis use and major depression among Mexican Americans, a pleiotropy that appears to be localized to a region on chromosome 11q23 that has been linked previously to these phenotypes.


Asunto(s)
Trastorno Depresivo Mayor/epidemiología , Predisposición Genética a la Enfermedad/epidemiología , Abuso de Marihuana/epidemiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Comorbilidad , Trastorno Depresivo Mayor/genética , Etnicidad/psicología , Etnicidad/estadística & datos numéricos , Femenino , Humanos , Masculino , Abuso de Marihuana/genética , Persona de Mediana Edad , Texas/epidemiología , Adulto Joven
12.
BMC Proc ; 10(Suppl 7): 67-70, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27980613

RESUMEN

Genetic Analysis Workshop 19 provided a platform for developing and evaluating statistical methods to analyze whole-genome sequence and gene expression data from a pedigree-based sample, as well as whole-exome sequence data from a large cohort of unrelated individuals. In this article we present an overview of the data sets, the GAW experience, and summaries of the contributions arranged into nine methodological themes.

13.
BMC Proc ; 10(Suppl 7): 71-77, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27980614

RESUMEN

BACKGROUND: The Genetic Analysis Workshops (GAW) are a forum for development, testing, and comparison of statistical genetic methods and software. Each contribution to the workshop includes an application to a specified data set. Here we describe the data distributed for GAW19, which focused on analysis of human genomic and transcriptomic data. METHODS: GAW19 data were donated by the T2D-GENES Consortium and the San Antonio Family Heart Study and included whole genome and exome sequences for odd-numbered autosomes, measures of gene expression, systolic and diastolic blood pressures, and related covariates in two Mexican American samples. These two samples were a collection of 20 large families with whole genome sequence and transcriptomic data and a set of 1943 unrelated individuals with exome sequence. For each sample, simulated phenotypes were constructed based on the real sequence data. 'Functional' genes and variants for the simulations were chosen based on observed correlations between gene expression and blood pressure. The simulations focused primarily on additive genetic models but also included a genotype-by-medication interaction. A total of 245 genes were designated as 'functional' in the simulations with a few genes of large effect and most genes explaining < 1 % of the trait variation. An additional phenotype, Q1, was simulated to be correlated among related individuals, based on theoretical or empirical kinship matrices, but was not associated with any sequence variants. Two hundred replicates of the phenotypes were simulated. The GAW19 data are an expansion of the data used at GAW18, which included the family-based whole genome sequence, blood pressure, and simulated phenotypes, but not the gene expression data or the set of 1943 unrelated individuals with exome sequence.

14.
BMC Proc ; 10(Suppl 7): 245-249, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27980644

RESUMEN

The new generation of whole genome sequencing platforms offers great possibilities and challenges for dissecting the genetic basis of complex traits. With a very high number of sequence variants, a naïve multiple hypothesis threshold correction hinders the identification of reliable associations by the overreduction of statistical power. In this report, we examine 2 alternative approaches to improve the statistical power of a whole genome association study to detect reliable genetic associations. The approaches were tested using the Genetic Analysis Workshop 19 (GAW19) whole genome sequencing data. The first tested method estimates the real number of effective independent tests actually being performed in whole genome association project by the use of an extreme value distribution and a set of phenotype simulations. Given the familiar nature of the GAW19 data and the finite number of pedigree founders in the sample, the number of correlations between genotypes is greater than in a set of unrelated samples. Using our procedure, we estimate that the effective number represents only 15 % of the total number of independent tests performed. However, even using this corrected significance threshold, no genome-wide significant association could be detected for systolic and diastolic blood pressure traits. The second approach implements a biological relevance-driven hypothesis tested by exploiting prior computational predictions on the effect of nonsynonymous genetic variants detected in a whole genome sequencing association study. This guided testing approach was able to identify 2 promising single-nucleotide polymorphisms (SNPs), 1 for each trait, targeting biologically relevant genes that could help shed light on the genesis of the human hypertension. The first gene, PFH14, associated with systolic blood pressure, interacts directly with genes involved in calcium-channel formation and the second gene, MAP4, encodes a microtubule-associated protein and had already been detected by previous genome-wide association study experiments conducted in an Asian population. Our results highlight the necessity of the development of alternative approached to improve the efficiency on the detection of reasonable candidate associations in whole genome sequencing studies.

15.
Epigenetics ; 11(9): 699-707, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27564309

RESUMEN

Epigenetic mechanisms, including DNA methylation, mediate the interaction between gene and environment and may play an important role in the obesity epidemic. We assessed the relationship between DNA methylation and obesity in peripheral blood mononuclear cells (PBMCs) at 485,000 CpG sites across the genome in family members (8-90 y of age) using a discovery cohort (192 individuals) and a validation cohort (1,052 individuals) of Northern European ancestry. After Bonferroni-correction (Pα=0.05 = 1.31 × 10-7) for genome-wide significance, we identified 3 loci, cg18181703 (SOCS3), cg04502490 (ZNF771), and cg02988947 (LIMD2), where methylation status was associated with body mass index percentile (BMI%), a clinical index for obesity in children, adolescents, and adults. These sites were also associated with multiple metabolic syndrome (MetS) traits, including central obesity, fat depots, insulin responsiveness, and plasma lipids. The SOCS3 methylation locus was also associated with the clinical definition of MetS. In the validation cohort, SOCS3 methylation status was found to be inversely associated with BMI% (P = 1.75 × 10-6), waist to height ratio (P = 4.18 × 10-7), triglycerides (P = 4.01 × 10-4), and MetS (P = 4.01 × 10-7), and positively correlated with HDL-c (P = 4.57 × 10-8). Functional analysis in a sub cohort (333 individuals) demonstrated SOCS3 methylation and gene expression in PBMCs were inversely correlated (P = 2.93 × 10-4) and expression of SOCS3 was positively correlated with status of MetS (P = 0.012). We conclude that epigenetic modulation of SOCS3, a gene involved in leptin and insulin signaling, may play an important role in obesity and MetS.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Síndrome Metabólico/genética , Obesidad/genética , Proteína 3 Supresora de la Señalización de Citocinas/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Línea Celular , Niño , Femenino , Genoma , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Linaje , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo
16.
Diabetes Care ; 39(11): 1889-1895, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27561922

RESUMEN

OBJECTIVE: A common nonsense mutation in TBC1D4 was recently found to substantially increase the odds of type 2 diabetes in Greenlandic Inuit, leading to exclusively increased postprandial glucose. We investigated the frequency and effect of the TBC1D4 mutation on glucose metabolism and type 2 diabetes diagnosis among Canadian and Alaskan Inuit. RESEARCH DESIGN AND METHODS: Exome sequencing of the TBC1D4 variant was performed in 114 Inuit from Nunavik, Canada, and Sanger sequencing was undertaken in 1,027 Alaskan Inuit from the Genetics of Coronary Artery Disease in Alaskan Natives (GOCADAN) Study. Association testing evaluated the effect of the TBC1D4 variant on diabetes-related metabolic traits and diagnosis. RESULTS: The TBC1D4 mutation was present in 27% of Canadian and Alaskan Inuit. It was strongly associated with higher glucose (effect size +3.3 mmol/L; P = 2.5 x 10-6) and insulin (effect size +175 pmol/L; P = 0.04) 2 h after an oral glucose load in homozygote carriers. TBC1D4 carriers with prediabetes and type 2 diabetes had an increased risk of remaining undiagnosed unless postprandial glucose values were tested (odds ratio 5.4 [95% CI 2.5-12]) compared with noncarriers. Of carriers with prediabetes or type 2 diabetes, 32% would remain undiagnosed without an oral glucose tolerance test (OGTT). CONCLUSIONS: Disruption of TBC1D4 is common among North American Inuit, resulting in exclusively elevated postprandial glucose. This leads to underdiagnosis of type 2 diabetes, unless an OGTT is performed. Accounting for genetic factors in the care of Inuit with diabetes provides an opportunity to implement precision medicine in this population.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Proteínas Activadoras de GTPasa/genética , Hiperglucemia/genética , Inuk/genética , Estado Prediabético/genética , Alaska , Glucemia/metabolismo , Canadá , Codón sin Sentido , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Prueba de Tolerancia a la Glucosa , Groenlandia , Humanos , Hiperglucemia/diagnóstico , Hiperglucemia/metabolismo , Insulina/metabolismo , Masculino , Persona de Mediana Edad , Periodo Posprandial , Medicina de Precisión , Estado Prediabético/diagnóstico , Estado Prediabético/metabolismo , Análisis de Secuencia de ADN
17.
JAMA Otolaryngol Head Neck Surg ; 142(9): 866-72, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27311106

RESUMEN

IMPORTANCE: Sensorineural hearing loss (SNHL) is commonly caused by conditions that affect cochlear structures or the auditory nerve, and the genes identified as causing SNHL to date only explain a fraction of the overall genetic risk for this debilitating disorder. It is likely that other genes and mutations also cause SNHL. OBJECTIVE: To identify a candidate gene that causes bilateral, symmetric, progressive SNHL in a large multigeneration family of Northern European descent. DESIGN, SETTING, AND PARTICIPANTS: In this prospective genotype and phenotype study performed from January 1, 2006, through April 1, 2016, a 6-generation family of Northern European descent with 19 individuals having reported early-onset hearing loss suggestive of an autosomal dominant inheritance were studied at a tertiary academic medical center. In addition, 179 unrelated adult individuals with SNHL and 186 adult individuals reporting nondeafness were examined. MAIN OUTCOMES AND MEASURES: Sensorineural hearing loss. RESULTS: Nine family members (5 women [55.6%]) provided clinical audiometric and medical records that documented hearing loss. The hearing loss is characterized as bilateral, symmetric, progressive SNHL that reached severe to profound loss in childhood. Audiometric configurations demonstrated a characteristic dip at 1000 to 2000 Hz. All affected family members wear hearing aids or have undergone cochlear implantation. Exome sequencing and linkage and association analyses identified a fully penetrant sequence variant (rs35725509) on chromosome 12q21 (logarithm of odds, 3.3) in the TMTC2 gene region that segregates with SNHL in this family. This gene explains the SNHL occurrence in this family. The variant is also associated with SNHL in a cohort of 363 unrelated individuals (179 patients with confirmed SNHL and 184 controls, P = 7 × 10-4). CONCLUSIONS AND RELEVANCE: A previously uncharacterized gene, TMTC2, has been identified as a candidate for causing progressive SNHL in humans. This finding identifies a novel locus that causes autosomal dominant SNHL and therefore a more detailed understanding of the genetic basis of SNHL. Because TMTC2 has not been previously reported to regulate auditory function, the discovery reveals a potentially new, uncharacterized mechanism of hearing loss.


Asunto(s)
Proteínas Portadoras/genética , Progresión de la Enfermedad , Pérdida Auditiva Bilateral/genética , Pérdida Auditiva Sensorineural/genética , Proteínas de la Membrana/genética , Mutación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Cromosomas Humanos Par 12 , Femenino , Genes Dominantes , Predisposición Genética a la Enfermedad , Variación Genética , Humanos , Masculino , Persona de Mediana Edad , Linaje , Estudios Prospectivos , Población Blanca/genética , Adulto Joven
18.
BMC Genomics ; 17: 276, 2016 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-27039371

RESUMEN

BACKGROUND: The variation in serum uric acid concentrations is under significant genetic influence. Elevated SUA concentrations have been linked to increased risk for gout, kidney stones, chronic kidney disease, and cardiovascular disease whereas reduced serum uric acid concentrations have been linked to multiple sclerosis, Parkinson's disease and Alzheimer's disease. Previously, we identified a novel locus on chromosome 3p26 affecting serum uric acid concentrations in Mexican Americans from San Antonio Family Heart Study. As a follow up, we examined genome-wide single nucleotide polymorphism data in an extended cohort of 1281 Mexican Americans from multigenerational families of the San Antonio Family Heart Study and the San Antonio Family Diabetes/Gallbladder Study. We used a linear regression-based joint linkage/association test under an additive model of allelic effect, while accounting for non-independence among family members via a kinship variance component. RESULTS: Univariate genetic analysis indicated serum uric acid concentrations to be significant heritable (h (2) = 0.50 ± 0.05, p < 4 × 10(-35)), and linkage analysis of serum uric acid concentrations confirmed our previous finding of a novel locus on 3p26 (LOD = 4.9, p < 1 × 10(-5)) in the extended sample. Additionally, we observed strong association of serum uric acid concentrations with variants in following candidate genes in the 3p26 region; inositol 1,4,5-trisphosphate receptor, type 1 (ITPR1), contactin 4 (CNTN4), decapping mRNA 1A (DCP1A); transglutaminase 4 (TGM4) and rho guanine nucleotide exchange factor (GEF) 26 (ARHGEF26) [p < 3 × 10(-7); minor allele frequencies ranged between 0.003 and 0.42] and evidence of cis-regulation for ITPR1 transcripts. CONCLUSION: Our results confirm the importance of the chromosome 3p26 locus and genetic variants in this region in the regulation of serum uric acid concentrations.


Asunto(s)
Contactinas/genética , Receptores de Inositol 1,4,5-Trifosfato/genética , Americanos Mexicanos/genética , Sitios de Carácter Cuantitativo , Ácido Úrico/sangre , Adulto , Cromosomas Humanos Par 3 , Femenino , Ligamiento Genético , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple
19.
BMC Genet ; 17 Suppl 2: 5, 2016 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-26867108

RESUMEN

BACKGROUND: New technologies for acquisition of genomic data, while offering unprecedented opportunities for genetic discovery, also impose severe burdens of interpretation and penalties for multiple testing. METHODS: The Pathway-based Analyses Group of the Genetic Analysis Workshop 19 (GAW19) sought reduction of multiple-testing burden through various approaches to aggregation of highdimensional data in pathways informed by prior biological knowledge. RESULTS: Experimental methods testedincluded the use of "synthetic pathways" (random sets of genes) to estimate power and false-positive error rate of methods applied to simulated data; data reduction via independent components analysis, single-nucleotide polymorphism (SNP)-SNP interaction, and use of gene sets to estimate genetic similarity; and general assessment of the efficacy of prior biological knowledge to reduce the dimensionality of complex genomic data. CONCLUSIONS: The work of this group explored several promising approaches to managing high-dimensional data, with the caveat that these methods are necessarily constrained by the quality of external bioinformatic annotation.


Asunto(s)
Biología Computacional/métodos , Redes Reguladoras de Genes , Expresión Génica , Genoma Humano , Humanos , Polimorfismo de Nucleótido Simple
20.
Clin Epigenetics ; 8: 6, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26798409

RESUMEN

BACKGROUND: There is growing interest in the hypertriglyceridemic waist (HTGW) phenotype, defined as high waist circumference (≥95 cm in males and ≥80 cm in females) combined with high serum triglyceride concentration (≥2.0 mmol/L in males and ≥1.5 mmol/L in females) as a marker of type 2 diabetes (T2D) and cardiovascular disease. However, the prevalence of this phenotype in high-risk populations, its association with T2D, and the genetic or epigenetic influences on HTGW are not well explored. Using data from large, extended families of Mexican Americans (a high-risk minority population in the USA) we aimed to: (1) estimate the prevalence of this phenotype, (2) test its association with T2D and related traits, and (3) dissect out the genetic and epigenetic associations with this phenotype using genome-wide and epigenome-wide studies, respectively. RESULTS: Data for this study was from 850 Mexican American participants (representing 39 families) recruited under the ongoing San Antonio Family Heart Study, 26 % of these individuals had HTGW. This phenotype was significantly heritable (h (2) r = 0.52, p = 1.1 × 10(-5)) and independently associated with T2D as well as fasting glucose levels and insulin resistance. We conducted genome-wide association analyses using 759,809 single nucleotide polymorphisms (SNPs) and epigenome-wide association analyses using 457,331 CpG sites. There was no evidence of any SNP associated with HTGW at the genome-wide level but two CpG sites (cg00574958 and cg17058475) in CPT1A and one CpG site (cg06500161) in ABCG1 were significantly associated with HTGW and remained significant after adjusting for the closely related components of metabolic syndrome. CPT1A holds a cardinal position in the metabolism of long-chain fatty acids while ABCG1 plays a role in triglyceride metabolism. CONCLUSIONS: Our results reemphasize the value of HTGW as a marker of T2D. This phenotype shows association with DNA methylation within CPT1A and ABCG1, genes involved in fatty acid and triglyceride metabolism. Our results underscore the importance of epigenetics in a clinically informative phenotype.


Asunto(s)
Epigénesis Genética , Hipertrigliceridemia/genética , Americanos Mexicanos/genética , Circunferencia de la Cintura/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1 , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/fisiología , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/fisiología , Diabetes Mellitus Tipo 2/genética , Epigenómica , Familia , Femenino , Marcadores Genéticos/genética , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...