Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Pers Med ; 14(6)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38929780

RESUMEN

A 69-year-old female presented with symptomatic atrial fibrillation. Cardiac amyloidosis was suspected due to an artificial intelligence clinical tool applied to the presenting electrocardiogram predicting a high probability for amyloidosis, and the subsequent unexpected finding of left atrial appendage thrombus reinforced this clinical suspicion. This facilitated an early diagnosis by the biopsy of AL cardiac amyloidosis and the prompt initiation of targeted therapy. This case highlights the utilization of an AI clinical tool and its impact on clinical care, particularly for the early detection of a rare and difficult to diagnose condition where early therapy is critical.

2.
Eur Heart J Digit Health ; 5(3): 295-302, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38774378

RESUMEN

Aims: Cardiac amyloidosis (CA) is common in patients with severe aortic stenosis (AS) undergoing transcatheter aortic valve replacement (TAVR). Cardiac amyloidosis has poor outcomes, and its assessment in all TAVR patients is costly and challenging. Electrocardiogram (ECG) artificial intelligence (AI) algorithms that screen for CA may be useful to identify at-risk patients. Methods and results: In this retrospective analysis of our institutional National Cardiovascular Disease Registry (NCDR)-TAVR database, patients undergoing TAVR between January 2012 and December 2018 were included. Pre-TAVR CA probability was analysed by an ECG AI predictive model, with >50% risk defined as high probability for CA. Univariable and propensity score covariate adjustment analyses using Cox regression were performed to compare clinical outcomes between patients with high CA probability vs. those with low probability at 1-year follow-up after TAVR. Of 1426 patients who underwent TAVR (mean age 81.0 ± 8.5 years, 57.6% male), 349 (24.4%) had high CA probability on pre-procedure ECG. Only 17 (1.2%) had a clinical diagnosis of CA. After multivariable adjustment, high probability of CA by ECG AI algorithm was significantly associated with increased all-cause mortality [hazard ratio (HR) 1.40, 95% confidence interval (CI) 1.01-1.96, P = 0.046] and higher rates of major adverse cardiovascular events (transient ischaemic attack (TIA)/stroke, myocardial infarction, and heart failure hospitalizations] (HR 1.36, 95% CI 1.01-1.82, P = 0.041), driven primarily by heart failure hospitalizations (HR 1.58, 95% CI 1.13-2.20, P = 0.008) at 1-year follow-up. There were no significant differences in TIA/stroke or myocardial infarction. Conclusion: Artificial intelligence applied to pre-TAVR ECGs identifies a subgroup at higher risk of clinical events. These targeted patients may benefit from further diagnostic evaluation for CA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...