Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(3): 105733, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38336291

RESUMEN

RNA Binding Proteins regulate, in part, alternative pre-mRNA splicing and, in turn, gene expression patterns. Polypyrimidine tract binding proteins PTBP1 and PTBP2 are paralogous RNA binding proteins sharing 74% amino acid sequence identity. Both proteins contain four structured RNA-recognition motifs (RRMs) connected by linker regions and an N-terminal region. Despite their similarities, the paralogs have distinct tissue-specific expression patterns and can regulate discrete sets of target exons. How two highly structurally similar proteins can exert different splicing outcomes is not well understood. Previous studies revealed that PTBP2 is post-translationally phosphorylated in the unstructured N-terminal, Linker 1, and Linker 2 regions that share less sequence identity with PTBP1 signifying a role for these regions in dictating the paralog's distinct splicing activities. To this end, we conducted bioinformatics analysis to determine the evolutionary conservation of RRMs versus linker regions in PTBP1 and PTBP2 across species. To determine the role of PTBP2 unstructured regions in splicing activity, we created hybrid PTBP1-PTBP2 constructs that had counterpart PTBP1 regions swapped to an otherwise PTBP2 protein and assayed on differentially regulated exons. We also conducted molecular dynamics studies to investigate how negative charges introduced by phosphorylation in PTBP2 unstructured regions can alter their physical properties. Collectively, results from our studies reveal an important role for PTBP2 unstructured regions and suggest a role for phosphorylation in the differential splicing activities of the paralogs on certain regulated exons.


Asunto(s)
Empalme Alternativo , Proteína de Unión al Tracto de Polipirimidina , Vertebrados , Animales , Humanos , Ratones , Ratas , Exones/genética , Ribonucleoproteínas Nucleares Heterogéneas/química , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Simulación de Dinámica Molecular , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Especificidad de Órganos , Fosforilación , Proteína de Unión al Tracto de Polipirimidina/química , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Especificidad de la Especie , Vertebrados/genética , Pollos/genética
2.
PLoS One ; 17(2): e0263287, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35113929

RESUMEN

RNA binding proteins play an important role in regulating alternative pre-mRNA splicing and in turn cellular gene expression. Polypyrimidine tract binding proteins, PTBP1 and PTBP2, are paralogous RNA binding proteins that play a critical role in the process of neuronal differentiation and maturation; changes in the concentration of PTBP proteins during neuronal development direct splicing changes in many transcripts that code for proteins critical for neuronal differentiation. How the two related proteins regulate different sets of neuronal exons is unclear. The distinct splicing activities of PTBP1 and PTBP2 can be recapitulated in an in vitro splicing system with the differentially regulated N1 exon of the c-src pre-mRNA. Here, we conducted experiments under these in vitro splicing conditions to identify PTBP1 and PTBP2 interacting partner proteins. Our results highlight that both PTBPs interact with proteins that participate in chromatin remodeling and transcription regulation. Our data reveal that PTBP1 interacts with many proteins involved in mRNA processing including splicing regulation while PTBP2 does not. Our results also highlight enzymes that can serve as potential "writers" and "erasers" in adding chemical modifications to the PTB proteins. Overall, our study highlights important differences in protein-protein interactions between the PTBP proteins under splicing conditions and supports a role for post-translational modifications in dictating their distinct splicing activities.


Asunto(s)
Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Empalme del ARN , Proteínas de Unión al ARN/química , Empalme Alternativo , Diferenciación Celular , Exones , Células HeLa , Humanos , Espectrometría de Masas , Neuronas/metabolismo , Unión Proteica , Procesamiento Proteico-Postraduccional , Precursores del ARN/genética , ARN Mensajero/genética
3.
Artículo en Inglés | MEDLINE | ID: mdl-33953811

RESUMEN

Although many science education researchers have investigated developing science education at the K-12 levels to meet the needs of underrepresented students in science, far fewer have considered how shifts to online instruction in undergraduate science courses might provide insights into better supporting the achievement of students from diverse backgrounds at the university level. This case study aims to fill this gap by engaging in a reflective interdisciplinary "deep dive" into the instruction of one biochemistry professor at a designated Hispanic Serving Institution (HSI), across two distinct modalities: face-to-face and online. The findings reported here suggest that the use of formative assessments and student feedback surveys, as well as responsive instructional strategies, facilitate access to and comprehension of complex material in the online modality, without diminishing achievement. Additionally, the reflective collaboration deployed methodologically in this study highlights how higher education faculty can marshal intellectual resources across distinct disciplines to identify and develop responsive pedagogy in advanced science courses at the university level.

4.
Pathogens ; 10(4)2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33924559

RESUMEN

Acinetobacter baumannii is a nosocomial pathogen capable of causing serious infections associated with high rates of morbidity and mortality. Due to its antimicrobial drug resistance profile, A. baumannii is categorized as an urgent priority pathogen by the Centers for Disease Control and Prevention in the United States and a priority group 1 critical microorganism by the World Health Organization. Understanding how A. baumannii adapts to different host environments may provide critical insights into strategically targeting this pathogen with novel antimicrobial and biological therapeutics. Exposure to human fluids was previously shown to alter the gene expression profile of a highly drug-susceptible A. baumannii strain A118 leading to persistence and survival of this pathogen. Herein, we explore the impact of human pleural fluid (HPF) and human serum albumin (HSA) on the gene expression profile of a highly multi-drug-resistant strain of A. baumannii AB5075. Differential expression was observed for ~30 genes, whose products are involved in quorum sensing, quorum quenching, iron acquisition, fatty acid metabolism, biofilm formation, secretion systems, and type IV pilus formation. Phenotypic and further transcriptomic analysis using quantitative RT-PCR confirmed RNA-seq data and demonstrated a distinctive role of HSA as the molecule involved in A. baumannii's response.

5.
Biochemistry ; 59(50): 4766-4774, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33284593

RESUMEN

Polypyrimidine tract binding protein 1 (PTBP1) is a well-studied RNA binding protein that serves as an important model for understanding molecular mechanisms underlying alternative splicing regulation. PTBP1 has four RNA binding domains (RBDs) connected via linker regions. Additionally, PTBP1 has an N-terminal unstructured region that contains nuclear import and export sequences. Each RBD can bind to pyrimidine rich elements with high affinity to mediate splicing activity. Studies support a variety of models for how PTBP1 can mediate splicing regulation on target exons. Obtaining a detailed atomic view hinges on determining a crystal structure of PTBP1 bound to a target RNA transcript. Here, we created a minimal functional PTBP1 with deletions in both linker 1 and linker 2 regions and assayed for activity on certain regulated exons, including the c-Src N1 exon. We show that for a subset of PTBP1-regulated exons the linker regions are not necessary for splicing repression activity. Gel mobility shift assays reveal the linker deletion mutant binds with 12-fold higher affinity to a target RNA sequence compared to wild-type PTBP1. A minimal PTBP1 that also contains an N-terminal region deletion binds to a target RNA with an affinity higher than that of wild-type PTBP1. Moreover, this minimal protein oligomerizes readily to form a distinct higher-order complex previously shown to be required for mediating splicing repression. This minimal functional PTBP1 protein can serve as a candidate for future structure studies to understand the mechanism of splicing repression for certain regulated exons.


Asunto(s)
Ribonucleoproteínas Nucleares Heterogéneas/química , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Proteína de Unión al Tracto de Polipirimidina/química , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Canales de Calcio Tipo L/genética , Línea Celular , Ensayo de Cambio de Movilidad Electroforética , Exones , Genes src , Ribonucleoproteínas Nucleares Heterogéneas/genética , Técnicas In Vitro , Ratones , Modelos Moleculares , Proteína de Unión al Tracto de Polipirimidina/genética , Dominios Proteicos , ARN/genética , ARN/metabolismo , Sitios de Empalme de ARN , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eliminación de Secuencia
6.
Eur J Med Chem ; 157: 1202-1213, 2018 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-30193218

RESUMEN

The West Nile virus (WNV) has spread throughout the world causing neuroinvasive diseases with no treatments available. The viral NS2B-NS3 protease is essential for WNV survival and replication in host cells and is a promising drug target. Through an enzymatic screen of the National Institute of Health clinical compound library, we report the discovery of zafirlukast, an FDA approved treatment for asthma, as an inhibitor for the WNV NS2B-NS3 protease. Zafirlukast was determined to inhibit the protease through a mixed mode mechanism with an IC50 value of 32 µM. A structure activity relationship study of zafirlukast revealed the cyclopentyl carbamate and N-aryl sulfonamide as structural elements crucial for NS2B-NS3 protease inhibition. Replacing the cyclopentyl with a phenyl improved inhibition, resulting in an IC50 of 22 µM. Experimental and computational docking analysis support the inhibition model of zafirlukast and analogs binding at an allosteric site on the NS3 protein, thereby disrupting the NS2B cofactor from binding, resulting in protease inhibition.


Asunto(s)
Antivirales/farmacología , Descubrimiento de Drogas , Inhibidores de Proteasas/farmacología , Compuestos de Tosilo/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Virus del Nilo Occidental/efectos de los fármacos , Virus del Nilo Occidental/enzimología , Antivirales/síntesis química , Antivirales/química , Relación Dosis-Respuesta a Droga , Indoles , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Fenilcarbamatos , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/química , ARN Helicasas/antagonistas & inhibidores , ARN Helicasas/metabolismo , Serina Endopeptidasas/metabolismo , Relación Estructura-Actividad , Sulfonamidas , Compuestos de Tosilo/síntesis química , Compuestos de Tosilo/química , Proteínas no Estructurales Virales/metabolismo
7.
Biochemistry ; 57(26): 3873-3882, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29851470

RESUMEN

RNA binding proteins play an important role in regulating alternative pre-mRNA splicing and in turn cellular gene expression. Many of these RNA binding proteins occur as gene families with members sharing a high degree of primary structure identity and domain organization yet have tissue-specific expression patterns and regulate different sets of target exons. How highly similar members in a gene family can exert different splicing outcomes is not well understood. We conducted mass spectrometry analysis of post-translational phosphorylation and acetylation modifications for two paralogs of the polypyrimidine tract binding protein family, PTBP1 and PTBP2, to discover modifications that occur in splicing reaction mixtures and to identify discrete modifications that may direct their different splicing activities. We find that PTBP1 and PTBP2 have many distinct phosphate modifications located in the unstructured N-terminal, linker 1, and linker 2 regions. We find that the two proteins have many overlapping acetate modifications in the RNA recognition motifs (RRMs) with a few distinct sites in PTBP1 RRM2 and RRM3. Our data also reveal that lysine residues in the nuclear localization sequence of PTBP2 are acetylated. Collectively, our results highlight important differences in post-translational modifications between the paralogs and suggest a role for them in the differential splicing activity of PTBP1 and PTBP2.


Asunto(s)
Escherichia coli/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/biosíntesis , Proteínas del Tejido Nervioso/biosíntesis , Proteína de Unión al Tracto de Polipirimidina/biosíntesis , Procesamiento Proteico-Postraduccional , Acetilación , Secuencias de Aminoácidos , Escherichia coli/genética , Ribonucleoproteínas Nucleares Heterogéneas/genética , Humanos , Proteínas del Tejido Nervioso/genética , Fosforilación , Proteína de Unión al Tracto de Polipirimidina/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética
8.
RNA ; 22(8): 1172-80, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27288314

RESUMEN

Most human genes generate multiple protein isoforms through alternative pre-mRNA splicing, but the mechanisms controlling alternative splicing choices by RNA binding proteins are not well understood. These proteins can have multiple paralogs expressed in different cell types and exhibiting different splicing activities on target exons. We examined the paralogous polypyrimidine tract binding proteins PTBP1 and PTBP2 to understand how PTBP1 can exhibit greater splicing repression activity on certain exons. Using both an in vivo coexpression assay and an in vitro splicing assay, we show that PTBP1 is more repressive than PTBP2 per unit protein on a target exon. Constructing chimeras of PTBP1 and 2 to determine amino acid features that contribute to their differential activity, we find that multiple segments of PTBP1 increase the repressive activity of PTBP2. Notably, when either RRM1 of PTBP2 or the linker peptide separating RRM2 and RRM3 are replaced with the equivalent PTBP1 sequences, the resulting chimeras are highly active for splicing repression. These segments are distinct from the known region of interaction for the PTBP1 cofactors Raver1 and Matrin3 in RRM2. We find that RRM2 of PTBP1 also increases the repression activity of an otherwise PTBP2 sequence, and that this is potentially explained by stronger binding by Raver1. These results indicate that multiple features over the length of the two proteins affect their ability to repress an exon.


Asunto(s)
Proteína de Unión al Tracto de Polipirimidina/metabolismo , Empalme del ARN , Animales , Células Cultivadas , Exones , Humanos , Proteína de Unión al Tracto de Polipirimidina/química , Conformación Proteica
9.
Crit Rev Biochem Mol Biol ; 47(4): 360-78, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22655688

RESUMEN

Alternative splicing patterns are regulated by RNA binding proteins that assemble onto each pre-mRNA to form a complex RNP structure. The polypyrimidine tract binding protein, PTB, has served as an informative model for understanding how RNA binding proteins affect spliceosome assembly and how changes in the expression of these proteins can control complex programs of splicing in tissues. In this review, we describe the mechanisms of splicing regulation by PTB and its function, along with its paralog PTBP2, in neuronal development.


Asunto(s)
Empalme Alternativo/fisiología , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Precursores del ARN/genética , Proteínas de Unión al ARN/metabolismo , Empalme Alternativo/genética , Animales , Humanos , Proteína de Unión al Tracto de Polipirimidina/genética , Empalme del ARN/genética , Empalme del ARN/fisiología , Proteínas de Unión al ARN/genética
10.
RNA ; 15(6): 1036-44, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19383764

RESUMEN

tRNA anticodon damage inflicted by secreted ribotoxins such as Kluyveromyces lactis gamma-toxin and bacterial colicins underlies a rudimentary innate immune system that distinguishes self from nonself species. The intracellular expression of gamma-toxin (a 232-amino acid polypeptide) arrests the growth of Saccharomyces cerevisiae by incising a single RNA phosphodiester 3' of the modified wobble base of tRNA(Glu). Fungal gamma-toxin bears no primary structure similarity to any known nuclease and has no plausible homologs in the protein database. To gain insight to gamma-toxin's mechanism, we tested the effects of alanine mutations at 62 basic, acidic, and polar amino acids on ribotoxin activity in vivo. We thereby identified 22 essential residues, including 10 lysines, seven arginines, three glutamates, one cysteine, and one histidine (His209, the only histidine present in gamma-toxin). Structure-activity relations were gleaned from the effects of 44 conservative substitutions. Recombinant tag-free gamma-toxin, a monomeric protein, incised an oligonucleotide corresponding to the anticodon stem-loop of tRNA(Glu) at a single phosphodiester 3' of the wobble uridine. The anticodon nuclease was metal independent. RNA cleavage was abolished by ribose 2'-H and 2'-F modifications of the wobble uridine. Mutating His209 to alanine, glutamine, or asparagine abolished nuclease activity. We propose that gamma-toxin catalyzes an RNase A-like transesterification reaction that relies on His209 and a second nonhistidine side chain as general acid-base catalysts.


Asunto(s)
Factores Asesinos de Levadura/química , Kluyveromyces/enzimología , ARN de Transferencia/metabolismo , Ribonucleasas/química , Secuencia de Aminoácidos , Arginina/química , Arginina/metabolismo , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Histidina/química , Histidina/metabolismo , Factores Asesinos de Levadura/metabolismo , Lisina/química , Lisina/metabolismo , Datos de Secuencia Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato
11.
J Biol Chem ; 283(45): 30942-9, 2008 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-18757371

RESUMEN

Binuclear metallophosphoesterases are an enzyme superfamily defined by a shared fold and a conserved active site. Although many family members have been characterized biochemically or structurally, the physiological substrates are rarely known, and the features that determine monoesterase versus diesterase activity are obscure. In the case of the dual phosphomonoesterase/diesterase enzyme CthPnkp, a phosphate-binding histidine was implicated as a determinant of 2',3'-cyclic nucleotide phosphodiesterase activity. Here we tested this model by comparing the catalytic repertoires of Mycobacterium tuberculosis Rv0805, which has this histidine in its active site (His(98)), and Escherichia coli YfcE, which has a cysteine at the equivalent position (Cys(74)). We find that Rv0805 has a previously unappreciated 2',3'-cyclic nucleotide phosphodiesterase function. Indeed, Rv0805 was 150-fold more active in hydrolyzing 2',3'-cAMP than 3',5'-cAMP. Changing His(98) to alanine or asparagine suppressed the 2',3'-cAMP phosphodiesterase activity of Rv0805 without adversely affecting hydrolysis of bis-p-nitrophenyl phosphate. Further evidence for a defining role of the histidine derives from our ability to convert the inactive YfcE protein to a vigorous and specific 2',3'-cNMP phosphodiesterase by introducing histidine in lieu of Cys(74). YfcE-C74H cleaved the P-O2' bond of 2',3'-cAMP to yield 3'-AMP as the sole product. Rv0805, on the other hand, hydrolyzed either P-O2' or P-O3' to yield a mixture of 3'-AMP and 2'-AMP products, with a bias toward 3'-AMP. These reaction outcomes contrast with that of CthPnkp, which cleaves the P-O3' bond of 2',3'-cAMP to generate 2'-AMP exclusively. It appears that enzymic features other than the phosphate-binding histidine can influence the orientation of the cyclic nucleotide and thereby dictate the choice of the leaving group.


Asunto(s)
2',3'-Nucleótido Cíclico Fosfodiesterasas/química , Proteínas Bacterianas/química , Metaloproteínas/química , Mycobacterium tuberculosis/enzimología , Pliegue de Proteína , 2',3'-Nucleótido Cíclico Fosfodiesterasas/genética , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , AMP Cíclico/química , AMP Cíclico/genética , Escherichia coli/enzimología , Escherichia coli/genética , Histidina/química , Histidina/genética , Hidrólisis , Metaloproteínas/genética , Mutación Missense , Mycobacterium tuberculosis/genética , Especificidad por Sustrato/genética
12.
Nucleic Acids Res ; 35(22): 7721-32, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17986465

RESUMEN

Clostridium thermocellum polynucleotide kinase-phosphatase (CthPnkp) catalyzes 5' and 3' end-healing reactions that prepare broken RNA termini for sealing by RNA ligase. The central phosphatase domain of CthPnkp belongs to the dinuclear metallophosphoesterase superfamily exemplified by bacteriophage lambda phosphatase (lambda-Pase). CthPnkp is a Ni(2+)/Mn(2+)-dependent phosphodiesterase-monoesterase, active on nucleotide and non-nucleotide substrates, that can be transformed toward narrower metal and substrate specificities via mutations of the active site. Here we characterize the Mn(2+)-dependent 2',3' cyclic nucleotide phosphodiesterase activity of CthPnkp, the reaction most relevant to RNA repair pathways. We find that CthPnkp prefers a 2',3' cyclic phosphate to a 3',5' cyclic phosphate. A single H189D mutation imposes strict specificity for a 2',3' cyclic phosphate, which is cleaved to form a single 2'-NMP product. Analysis of the cyclic phosphodiesterase activities of mutated CthPnkp enzymes illuminates the active site and the structural features that affect substrate affinity and k(cat). We also characterize a previously unrecognized phosphodiesterase activity of lambda-Pase, which catalyzes hydrolysis of bis-p-nitrophenyl phosphate. lambda-Pase also has cyclic phosphodiesterase activity with nucleoside 2',3' cyclic phosphates, which it hydrolyzes to yield a mixture of 2'-NMP and 3'-NMP products. We discuss our results in light of available structural and functional data for other phosphodiesterase members of the binuclear metallophosphoesterase family and draw inferences about how differences in active site composition influence catalytic repertoire.


Asunto(s)
2',3'-Nucleótido Cíclico Fosfodiesterasas/química , Proteínas Bacterianas/química , Bacteriófago lambda/enzimología , Clostridium thermocellum/enzimología , Hidrolasas Diéster Fosfóricas/química , Monoéster Fosfórico Hidrolasas/química , 2',3'-Nucleótido Cíclico Fosfodiesterasas/metabolismo , Nucleótidos de Adenina/metabolismo , Proteínas Bacterianas/metabolismo , Sitios de Unión , Proteínas Fúngicas , Cinética , Nitrofenoles/química , Nitrofenoles/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Especificidad por Sustrato
13.
Nucleic Acids Res ; 35(11): 3624-30, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17488852

RESUMEN

Programmed RNA breakage is an emerging theme underlying cellular responses to stress, virus infection and defense against foreign species. In many cases, site-specific cleavage of the target RNA generates 2',3' cyclic phosphate and 5'-OH ends. For the damage to be repaired, both broken ends must be healed before they can be sealed by a ligase. Healing entails hydrolysis of the 2',3' cyclic phosphate to form a 3'-OH and phosphorylation of the 5'-OH to form a 5'-PO4. Here, we demonstrate that a polynucleotide kinase-phosphatase enzyme from Clostridium thermocellum (CthPnkp) can catalyze both of the end-healing steps of tRNA splicing in vitro. The route of tRNA repair by CthPnkp can be reprogrammed by a mutation in the 3' end-healing domain (H189D) that yields a 2'-PO4 product instead of a 2'-OH. Whereas tRNA ends healed by wild-type CthPnkp are readily sealed by T4 RNA ligase 1, the H189D enzyme generates ends that are spliced by yeast tRNA ligase. Our findings suggest that RNA repair enzymes can evolve their specificities to suit a particular pathway.


Asunto(s)
Proteínas Bacterianas/metabolismo , Clostridium thermocellum/enzimología , Monoéster Fosfórico Hidrolasas/metabolismo , Empalme del ARN , ARN de Transferencia/metabolismo , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Catálisis , Monoéster Fosfórico Hidrolasas/genética , ARN de Transferencia/química
14.
J Biol Chem ; 282(16): 11941-9, 2007 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-17303560

RESUMEN

Triphosphate tunnel metalloenzymes (TTMs) are a newly recognized superfamily of phosphotransferases defined by a unique active site residing within an eight-stranded beta barrel. The prototypical members are the eukaryal metal-dependent RNA triphosphatases, which catalyze the initial step in mRNA capping. Little is known about the activities and substrate specificities of the scores of TTM homologs present in bacterial and archaeal proteomes, nearly all of which are annotated as adenylate cyclases. Here we have conducted a biochemical and structure-function analysis of a TTM protein (CthTTM) from the bacterium Clostridium thermocellum. CthTTM is a metal-dependent tripolyphosphatase and nucleoside triphosphatase; it is not an adenylate cyclase. We have identified 11 conserved amino acids in the tunnel that are critical for tripolyphosphatase and ATPase activity. The most salient findings are that (i) CthTTM is 150-fold more active in cleaving tripolyphosphate than ATP and (ii) the substrate specificity of CthTTM can be transformed by a single mutation (K8A) that abolishes tripolyphosphatase activity while strongly stimulating ATP hydrolysis. Our results underscore the plasticity of CthTTM substrate choice and suggest how novel specificities within the TTM superfamily might evolve through changes in the residues that line the tunnel walls.


Asunto(s)
Clostridium thermocellum/enzimología , Nucleósido-Trifosfatasa/fisiología , Monoéster Fosfórico Hidrolasas/metabolismo , Adenosina Trifosfato/química , Alanina/química , Secuencia de Aminoácidos , Sitios de Unión , Hidrólisis , Metales/química , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Nucleósido-Trifosfatasa/química , Proteínas Recombinantes/química , Relación Estructura-Actividad , Especificidad por Sustrato , Factores de Tiempo
15.
J Biol Chem ; 281(28): 19251-9, 2006 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-16675457

RESUMEN

The central phosphatase domain of Clostridium thermocellum polynucleotide kinase/phosphatase (CthPnkp) belongs to the dinuclear metallophosphoesterase superfamily. Prior mutational studies of CthPnkp identified 7 individual active site side chains (Asp-187, His-189, Asp-233, Asn-263, His-323, His-376, and Asp-392) required for Ni2+-dependent hydrolysis of p-nitrophenyl phosphate. Here we find that Mn2+-dependent phosphomonoesterase activity requires two additional residues, Arg-237 and His-264. We report that CthPnkp also converts bis-p-nitrophenyl phosphate to p-nitrophenol and inorganic phosphate via a processive two-step mechanism. The Ni2+-dependent phosphodiesterase activity of CthPnkp requires the same seven side chains as the Ni2+-dependent phosphomonoesterase. However, the Mn2+-dependent phosphodiesterase activity does not require His-189, Arg-237, or His-264, each of which is critical for the Mn2+-dependent phosphomonoesterase. Mutations H189A, H189D, and D392N transform the metal and substrate specificity of CthPnkp such that it becomes a Mn2+-dependent phosphodiesterase. The H189E change results in a Mn2+/Ni2+-dependent phosphodiesterase. Mutations H376N, H376D, and D392E convert the enzyme into a Mn2+-dependent phosphodiesterase-monoesterase. The phosphodiesterase activity is strongly stimulated compared with wild-type CthPnkp when His-189 is changed to Asp, Arg-237 is replaced by Ala or Gln, and His-264 is replaced by Ala, Asn, or Gln. Steady-state kinetic analysis of wild-type and mutated enzymes illuminates the structural features that affect substrate affinity and kcat. Our results highlight CthPnkp as an "undifferentiated" diesterase-monoesterase that can evolve toward narrower metal and substrate specificities via alterations of the active site milieu.


Asunto(s)
Clostridium thermocellum/enzimología , Hidrolasas Diéster Fosfóricas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Polinucleótido 5'-Hidroxil-Quinasa/fisiología , Sitios de Unión , Diferenciación Celular , Análisis Mutacional de ADN , Cinética , Manganeso/química , Modelos Moleculares , Mutación , Polinucleótido 5'-Hidroxil-Quinasa/química , Sodio/química , Especificidad por Sustrato
16.
RNA ; 12(1): 73-82, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16301605

RESUMEN

Polynucleotide kinase-phosphatase (Pnkp) from Clostridium thermocellum catalyzes ATP-dependent phosphorylation of 5'-OH termini of DNA or RNA polynucleotides and Ni(2+)/Mn(2+)-dependent dephosphorylation of 2',3' cyclic phosphate, 2'-phosphate, and 3'-phosphate ribonucleotides. CthPnkp is an 870-amino-acid polypeptide composed of three domains: an N-terminal module similar to bacteriophage T4 polynucleotide kinase, a central module that resembles the dinuclear metallo-phosphoesterase superfamily, and a C-terminal ligase-like adenylyltransferase domain. Here we conducted a mutational analysis of CthPnkp that identified 11 residues required for Ni(2+)-dependent phosphatase activity with 2'-AMP and 3'-AMP. Eight of the 11 CthPnkp side chains were also required for Ni(2+)-dependent hydrolysis of p-nitrophenyl phosphate. The ensemble of essential side chains includes the conserved counterparts (Asp187, His189, Asp233, Arg237, Asn263, His264, His323, His376, and Asp392 in CthPnkp) of all of the amino acids that form the dinuclear metal-binding site and the phosphate-binding site of bacteriophage lambda phosphatase. Three residues (Asp236, His264, and Arg237) required for activity with 2'-AMP or 3'-AMP were dispensable for Ni(2+)-dependent hydrolysis of p-nitrophenyl phosphate. Our findings, together with available structural information, provide fresh insights to the metallophosphoesterase mechanism, including the roles of His264 and Asp236 in proton donation to the leaving group. Deletion analysis defined an autonomous phosphatase domain, CthPnkp-(171-424).


Asunto(s)
Clostridium thermocellum/enzimología , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/farmacocinética , Polinucleótido 5'-Hidroxil-Quinasa/química , Alanina/química , Alanina/genética , Secuencia de Aminoácidos , Sitios de Unión , Hidrólisis , Datos de Secuencia Molecular , Mutación , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , Polinucleótido 5'-Hidroxil-Quinasa/metabolismo , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
17.
J Bacteriol ; 187(20): 6902-8, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16199559

RESUMEN

Archaea encode a DNA ligase composed of a C-terminal catalytic domain typical of ATP-dependent ligases plus an N-terminal domain similar to that found in eukaryotic cellular and poxvirus DNA ligases. All archaeal DNA ligases characterized to date have ATP-dependent adenylyltransferase and nick-joining activities. However, recent reports of dual-specificity ATP/NAD+ ligases in two Thermococcus species and Pyrococcus abyssi and an ATP/ADP ligase in Aeropyrum pernix raise the prospect that certain archaeal enzymes might exemplify an undifferentiated ancestral stage in the evolution of ligase substrate specificity. Here we analyze the biochemical properties of Pyrococcus horikoshii DNA ligase. P. horikoshii ligase catalyzes auto-adenylylation and nick sealing in the presence of a divalent cation and ATP; it is unable to utilize NAD+ or ADP to promote ligation in lieu of ATP. P. horikoshii ligase is thermophilic in vitro, with optimal adenylyltransferase activity at 90 degrees C and nick-joining activity at 70 to 90 degrees C. P. horikoshii ligase resembles the ligases of Methanobacterium thermautotrophicum and Sulfolobus shibatae in its strict specificity for ATP.


Asunto(s)
ADN Ligasas/genética , ADN Ligasas/metabolismo , Pyrococcus horikoshii/enzimología , Pyrococcus horikoshii/genética , Adenosina Difosfato/metabolismo , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Arqueales/genética , Proteínas Arqueales/aislamiento & purificación , Proteínas Arqueales/metabolismo , Secuencia de Bases , ADN Ligasas/aislamiento & purificación , ADN de Archaea/química , ADN de Archaea/metabolismo , Conformación de Ácido Nucleico , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/aislamiento & purificación , Nucleotidiltransferasas/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...