Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Eur J Pharmacol ; 977: 176736, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38878877

RESUMEN

Mitochondrial dysfunction and the activation of multiple programmed cell death (PCD) have been shown to aggravate the severity and mortality associated with the progression of myocardial infarction (MI). Although pharmacological modulation of mitochondrial dynamics, including treatment with the fusion promoter (M1) and the fission inhibitor (Mdivi-1), exerted cardioprotection against several cardiac complications, their roles in the post-MI model have never been investigated. Using a MI rat model instigated by permanent left-anterior descending (LAD) coronary artery occlusion, post-MI rats were randomly assigned to receive one of 4 treatments (n = 10/group): vehicle (DMSO 3%V/V), enalapril (10 mg/kg), Mdivi-1 (1.2 mg/kg) and M1 (2 mg/kg), while a control group of sham operated rats underwent surgery without LAD occlusion (n = 10). After 32-day treatment, cardiac and mitochondrial function, and histopathological morphology were investigated and molecular analysis was performed. Treatment with enalapril, Mdivi-1, and M1 significantly mitigated cardiac pathological remodeling, reduced myocardial injury, and improved left ventricular (LV) function in post-MI rats. Importantly, all interventions also attenuated mitochondrial dynamic imbalance and mitigated activation of apoptosis, necroptosis, and pyroptosis after MI. This investigation demonstrated for the first time that chronic mitochondrial dynamic-targeted therapy mitigated mitochondrial dysfunction and activation of PCD, leading to improved LV function in post-MI rats.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38567632

RESUMEN

The cardio-ankle vascular index (CAVI) is a noninvasive parameter reflecting vascular stiffness. CAVI correlates with the burden of atherosclerosis and future cardiovascular events. Mitochondria of peripheral blood mononuclear cells (PBMCs) have been identified as a noninvasive source for assessing systemic mitochondrial bioenergetics. This study aimed to investigate the relationship between CAVI values and mitochondrial bioenergetics of PBMCs in the older adults.. This cross-sectional study enrolled participants from the Electricity Generating Authority of Thailand between 2017 and 2018. A total of 1 640 participants with an ankle-brachial index greater than 0.9 were included in this study. All participants were stratified into 3 groups based on their CAVI values as high (CAVI ≥ 9), moderate (9 > CAVI ≥ 8), and low (CAVI < 8), in which each group comprised 702, 507, and 431 participants, respectively. The extracellular flux analyzer was used to measure mitochondrial respiration of isolated PBMCs. The mean age of the participants was 67.9 years, and 69.6% of them were male. After adjusted with potential confounders including age, sex, smoking status, body mass index, diabetes, dyslipidemia, hypertension, and creatinine clearance, participants with high CAVI values were independently associated with impaired mitochondrial bioenergetics, including decreased basal respiration, maximal respiration, and spare respiratory capacity, as well as increased mitochondrial reactive oxygen species. This study demonstrated that CAVI measurement reflects the underlying impairment of cellular mitochondrial bioenergetics in PBMCs. Further longitudinal studies are necessary to establish both a causal relationship between CAVI measurement and underlying cellular dysfunction.


Asunto(s)
Metabolismo Energético , Leucocitos Mononucleares , Mitocondrias , Rigidez Vascular , Humanos , Masculino , Femenino , Anciano , Estudios Transversales , Metabolismo Energético/fisiología , Leucocitos Mononucleares/metabolismo , Mitocondrias/metabolismo , Rigidez Vascular/fisiología , Índice Tobillo Braquial , Tailandia , Índice Vascular Cardio-Tobillo , Persona de Mediana Edad
3.
Sci Rep ; 13(1): 23027, 2023 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-38155244

RESUMEN

Gut microbiota play an important role in the health and disease of Asian elephants, however, its characteristics at each stage of life have not been thoroughly investigated in maintaining and regulating health of elephants. This study, therefore, aimed to characterize the profiles of the gut microbiota of captive Asian elephants from infants to the elderly. Gut microbiota were identified by 16S rRNA sequencing from the feces of captive Asian elephants with varying age groups, including infant calves, suckling calves, weaned calves, subadult and adult elephants, and geriatric elephants. The diversity of the gut microbiota was lowest in infants, stable during adulthood, and slightly decreased in the geriatric period. The gut microbiota of the infant elephants was dominated by milk-fermenting taxa including genus Bifidobacterium of family Bifidobacteriaceae together with genus Akkermansia. The fiber-fermenting taxa such as Lachnospiraceae_NK3A20_group were found to be increased in suckling elephants in differential abundance analysis by Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC). The gut microbiota profiles after weaning until the adult period has been uniform as indicated by no significant differences in beta diversity between groups. However, the composition of the gut microbiota was found to change again in geriatric elephants. Understanding of the composition of the gut microbiota of captive Asian elephants at various life stages could be beneficial for promoting good health throughout their lifespan, as well as ensuring the welfare of captive elephants.


Asunto(s)
Elefantes , Microbioma Gastrointestinal , Animales , Lactante , Humanos , Anciano , Adulto , Elefantes/fisiología , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , Destete , Longevidad
4.
J Wound Care ; 32(10): 676-684, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37830829

RESUMEN

OBJECTIVE: This study aimed to investigate the involvement of mitochondrial biogenesis, and determine the extent of fibroblast proliferation and cellular apoptosis, in the gingiva of patients who had undergone head and neck radiation, after receiving hyperbaric oxygen therapy (HBOT), in comparison with normal gingiva. METHOD: A total of 16 patients who had undergone head and neck radiation with HBOT and six healthy subjects were included in the study. After the completion of radiation therapy, patients received HBOT at 2 ATA for 90 minutes per session, and for 20 sessions per patient. Samples of gingival tissues were then taken. The levels of: transforming growth factor beta (TGF-ß); phospho-nuclear factor kappa-light-chain-enhancer of activated B cells (p-NFÏ°B); nuclear factor kappa-light-chain-enhancer of activated B cells (NFÏ°B); proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α); phospho-dynamin-related protein 1 at ser616 (p-Drp1ser616); dynamin-related protein 1 (Drp1); Bcl-2-associated X-protein (Bax); and B-cell lymphoma 2 (Bcl-2) were determined using a Western blot. Independent t-test and Chi-squared tests were used in the study. RESULTS: There were no differences in the levels of TGF-ß, p-NFÏ°B, NFÏ°B, p-Drp1ser616, Drp1, Bax and Bcl-2 between the two groups. However, the level of PGC-1α was greater in irradiated gingival tissues with HBOT than in the healthy gingiva. CONCLUSION: Radiation-induced impaired wound healing can be improved by HBOT as indicated by levels of apoptosis, mitochondrial dynamics, cell proliferation and inflammation in irradiated gingiva with HBOT to a similar level to normal healthy gingiva. These findings may occur through an increase in mitochondrial biogenesis following HBOT.


Asunto(s)
Oxigenoterapia Hiperbárica , Humanos , Encía , Proteína X Asociada a bcl-2 , Cicatrización de Heridas , Factor de Crecimiento Transformador beta , Dinaminas
5.
Eur J Pharmacol ; 956: 175939, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37536625

RESUMEN

An imbalance of brain mitochondrial dynamics, increases in brain inflammation and apoptosis, and increasing cognitive dysfunction, have been reported as being associated with prediabetes and myocardial ischemia-reperfusion (IR) injury. Since inhibiting mitochondrial fission with Mdivi-1 or promoting fusion with M1 had cardioprotective effects in myocardial IR injury and obesity, the neuroprotective roles of Mdivi-1 and M1 when administered at different time points of myocardial IR injury in obese prediabetes have never been determined. Ninety-six male Wistar rats were fed with either a normal (ND: n = 8) or a high-fat diet to induce prediabetes (HFD: n = 88) for 12 weeks. At week 13, all rats were subjected to left anterior descending coronary artery ligation for 30 min, followed by reperfusion for 120 min. HFD rats were randomly divided into 10 groups and assigned into either a pre-ischemic group treated with vehicle (HFV), pre-ischemic, during-ischemic, or onset of reperfusion groups treated with either Mdivi-1 (MDV), M1, or combined (COM). Heart function was examined invasively, with the heart being terminated to investigate myocardial infarction. Brains were collected to determine mitochondrial functions, inflammation, apoptosis, and pathological markers. Mdivi-1, M1, and COM treatment at different periods exerted cardioprotection against myocardial IR injury in HFD-fed rats by reducing infarct size and left ventricular dysfunction. All interventions also improved all brain pathologies against myocardial IR injury in prediabetic rats. These findings suggest that differential temporal modulation of mitochondrial dynamics may be appropriate regimens for preventing heart and brain complications after myocardial IR injury in obese prediabetes.


Asunto(s)
Daño por Reperfusión Miocárdica , Estado Prediabético , Ratas , Masculino , Animales , Daño por Reperfusión Miocárdica/complicaciones , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/prevención & control , Ratas Wistar , Estado Prediabético/complicaciones , Estado Prediabético/tratamiento farmacológico , Dinámicas Mitocondriales , Cardiotónicos/farmacología , Encéfalo , Inflamación/tratamiento farmacológico , Apoptosis , Obesidad/tratamiento farmacológico
6.
Life Sci ; 329: 121971, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37482212

RESUMEN

AIMS: Cardiotoxicity is a seriously debilitating complication of trastuzumab (TRZ) therapy in patients with cancer as a consequence of overexpression of the human epidermal growth factor receptor 2. Although most TRZ-induced cardiotoxicity (TIC) cases are reversible, some patients experience chronic cardiac dysfunction, and these irreversible concepts may be associated with cardiomyocyte death. Acetylcholine receptor (AChR) activation has been shown to exert cardioprotection in several heart diseases, but the effects of AChR agonists against TIC have not been investigated. MAIN METHOD: Forty adult male Wistar rats were randomized into 5 groups: (i) CON (0.9 % normal saline), (ii) TRZ (4 mg/kg/day), (iii) TRZ + α7nAChR agonist (PNU-282987: 3 mg/kg/day), (iv) TRZ + mAChR agonists (bethanechol: 12 mg/kg/day), and (v) TRZ + combined treatment (Combined PNU-282987 and bethanechol). KEY FINDINGS: The progression of TIC was driven by mitochondrial dysfunction, autophagic deficiency, and excessive myocyte death including by pyroptosis, ferroptosis, and apoptosis, which were significantly alleviated by α7nAChR and mAChR agonists. Interestingly, necroptosis was not associated with development of TIC. More importantly, the in vitro study validated the cytoprotective effects of AChR activation in TRZ-treated H9c2 cells, while not interfering with the anticancer properties of TRZ. All of these findings indicated that TRZ induced mitochondrial dysfunction, autophagic deficiency, and excessive myocyte death including pyroptosis, ferroptosis, and apoptosis, leading to impaired cardiac function. These pathological alterations were attenuated by α7nAChR and mAChR agonists. SIGNIFICANCE: α7nAChR and mAChR agonists might be used as a future therapeutic target in the mitigation of TIC.


Asunto(s)
Cardiotoxicidad , Cardiopatías , Adulto , Humanos , Masculino , Ratas , Animales , Trastuzumab/efectos adversos , Cardiotoxicidad/etiología , Función Ventricular Izquierda , Betanecol/farmacología , Receptor Nicotínico de Acetilcolina alfa 7 , Ratas Wistar , Cardiopatías/inducido químicamente , Muerte Celular
10.
Cardiovasc Drugs Ther ; 37(1): 89-105, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-34515894

RESUMEN

PURPOSE: There is an increasing body of evidence to show that impairment in mitochondrial dynamics including excessive fission and insufficient fusion has been observed in the pre-diabetic condition. In pre-diabetic rats with cardiac ischemia-reperfusion (I/R) injury, acute treatment with a mitochondria fission inhibitor (Mdivi-1) and a fusion promoter (M1) showed cardioprotection. However, the potential preventive effects of chronic Mdivi-1 and M1 treatment in a pre-diabetic model of cardiac I/R have never been elucidated. METHODS: Male Wistar rats (n = 40) were fed with a high-fat diet (HFD) for 12 weeks to induce prediabetes. Then, all pre-diabetic rats received the following treatments daily via intraperitoneal injection for 2 weeks: (1) HFDV (Vehicle, 0.1% DMSO); (2) HFMdivi1 (Mdivi-1 1.2 mg/kg); (3) HFM1 (M1 2 mg/kg); and (4) HFCom (Mdivi-1 + M1). At the end of treatment protocols, all rats underwent 30 min of coronary artery ligation followed by reperfusion for 120 min. RESULTS: Chronic Mdivi-1, M1, and the combined treatment showed markedly improved cardiac mitochondrial function and dynamic control, leading to a decrease in cardiac arrhythmias, myocardial cell death, and infarct size (49%, 42%, and 51% reduction for HFMdivi1, HFM1, and HFCom, respectively vs HFDV). All of these treatments improved cardiac function following cardiac I/R injury in pre-diabetic rats. CONCLUSION: Chronic inhibition of mitochondrial fission and promotion of fusion exerted cardioprevention in prediabetes with cardiac I/R injury through the relief of cardiac mitochondrial dysfunction and dynamic alterations, and reduction in myocardial infarction, thus improving cardiac function.


Asunto(s)
Diabetes Mellitus Experimental , Daño por Reperfusión Miocárdica , Estado Prediabético , Ratas , Masculino , Animales , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/metabolismo , Ratas Wistar , Dinámicas Mitocondriales , Estado Prediabético/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Miocitos Cardíacos , Mitocondrias/metabolismo , Apoptosis
11.
J Gerontol A Biol Sci Med Sci ; 78(3): 384-391, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36148512

RESUMEN

Mitochondrial dysfunction is a factor potentially contributing to the Aging process. However, evidence surrounding changes in mitochondrial function and aging is still limited; therefore, this study aimed to investigate further the association between them. Possible confounding factors were included in the statistical analysis to explore the possibility of any independent associations. One thousand seven hundred and sixty-nine participants (619 middle-aged adults [age < 65] and 1,150 older adults [age ≥ 65]) from the Electricity Generating Authority of Thailand were enrolled in the study. The clinical characteristics and medical history were collected. Peripheral blood mononuclear cells (PBMCs) were isolated from venous blood and used for analysis of mitochondrial function. Several parameters pertinent to mitochondrial respiration including non-mitochondrial respiration, basal respiration, maximal respiration, proton leak, and spare respiratory capacity were found to be two to three times lower in the mitochondria isolated from the cells of older adults. Interestingly, the mitochondrial ATP production was only slightly reduced, and the percentage of coupling efficiency of PBMC mitochondria was significantly higher in the older adult group. The mitochondrial mass and oxidative stress were significantly reduced in older adult participants; however, the ratio of oxidative stress to mass was significantly increased. The association of these parameters with age was still shown to be the same from the outcome of the multivariate analyses. The mitochondrial functions and mitochondrial mass in PBMCs were shown to decline in association with age. However, the upregulation of mitochondrial oxidative stress production and mitochondrial coupling efficiency might indicate a compensatory response in mitochondria during aging.


Asunto(s)
Respiración de la Célula , Leucocitos Mononucleares , Humanos , Anciano , Persona de Mediana Edad , Leucocitos Mononucleares/metabolismo , Respiración de la Célula/fisiología , Mitocondrias/metabolismo , Envejecimiento , Estrés Oxidativo
12.
Biochim Biophys Acta Mol Basis Dis ; 1869(2): 166618, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36494039

RESUMEN

Trastuzumab has an impressive level of efficacy as regards antineoplasticity, however it can cause serious cardiotoxic side effects manifested by impaired cardiac contractile function. Although several pharmacological interventions, including melatonin and metformin, have been reported to protect against various cardiovascular diseases, their potential roles in trastuzumab-induced cardiotoxicity remain elusive. We hypothesized that either melatonin or metformin co-treatment effectively attenuates trastuzumab-mediated cardiotoxicity through attenuating the impaired mitochondrial function and mitochondrial dynamics. Male Wistar rats were divided into control (normal saline, n = 8) and trastuzumab group (4 mg/kg/day for 7 days, n = 24). Rats in the trastuzumab group were subdivided into 3 interventional groups (n = 8/group), and normal saline, or melatonin (10 mg/kg/day), or metformin (250 mg/kg/day) were orally administered for 7 consecutive days. Cardiac parameters were determined, and biochemical investigations were carried out on blood and heart tissues. Trastuzumab induced left ventricular (LV) dysfunction by increasing oxidative stress, inflammation, and apoptosis. It also impaired cardiac mitochondrial function, dynamics, and autophagy. Treatment with either melatonin or metformin equally attenuated trastuzumab-induced cardiac injury, indicated by a marked reduction in inflammation, oxidative damage, cardiac mitochondrial injury, mitochondrial dynamic imbalance, autophagy dysregulation, and apoptosis, leading to improved LV function, as demonstrated by increased LV ejection fraction. Melatonin and metformin conferred equal levels of cardioprotection against trastuzumab-induced cardiotoxicity, which may provide novel and promising approaches for management of cardiotoxicity induced by trastuzumab.


Asunto(s)
Melatonina , Metformina , Disfunción Ventricular Izquierda , Ratas , Masculino , Animales , Cardiotoxicidad/etiología , Metformina/farmacología , Trastuzumab/uso terapéutico , Melatonina/farmacología , Solución Salina/efectos adversos , Ratas Wistar , Disfunción Ventricular Izquierda/tratamiento farmacológico , Mitocondrias , Inflamación/inducido químicamente
13.
Cell Mol Life Sci ; 80(1): 21, 2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36583785

RESUMEN

The aberration of programmed cell death including cell death associated with autophagy/mitophagy, apoptosis, necroptosis, pyroptosis, and ferroptosis can be observed in the development and progression of doxorubicin-induced cardiotoxicity (DIC). Vagus nerve stimulation (VNS) has been shown to exert cardioprotection against cardiomyocyte death through the release of the neurotransmitter acetylcholine (ACh) under a variety of pathological conditions. However, the roles of VNS and its underlying mechanisms against DIC have never been investigated. Forty adults male Wistar rats were divided into 5 experimental groups: (i) control without VNS (CSham) group, (ii) doxorubicin (3 mg/kg/day, i.p.) without VNS (DSham) group, (iii) doxorubicin + VNS (DVNS) group, (iv) doxorubicin + VNS + mAChR antagonist (atropine; 1 mg/kg/day, ip, DVNS + Atro) group, and (v) doxorubicin + VNS + nAChR antagonist (mecamylamine; 7.5 mg/kg/day, ip, DVNS + Mec) group. Our results showed that doxorubicin insult led to left ventricular (LV) dysfunction through impaired cardiac autonomic balance, decreased mitochondrial function, imbalanced mitochondrial dynamics, and exacerbated cardiomyocyte death including autophagy/mitophagy, apoptosis, necroptosis, pyroptosis, and ferroptosis. However, VNS treatment improved cardiac mitochondrial and autonomic functions, and suppressed excessive autophagy, apoptosis, necroptosis, pyroptosis, and ferroptosis, leading to improved LV function. Consistent with this, ACh effectively improved cell viability and suppressed cell cytotoxicity in doxorubicin-treated H9c2 cells. In contrast, either inhibitors of muscarinic (mAChR) or nicotinic acetylcholine receptor (nAChR) completely abrogated the favorable effects mediated by VNS and acetylcholine. These findings suggest that VNS exerts cardioprotective effects against doxorubicin-induced cardiomyocyte death via activation of both mAChR and nAChR.


Asunto(s)
Infarto del Miocardio , Estimulación del Nervio Vago , Ratas , Animales , Masculino , Infarto del Miocardio/patología , Estimulación del Nervio Vago/métodos , Acetilcolina , Cardiotoxicidad/terapia , Ratas Wistar , Apoptosis/fisiología , Doxorrubicina/toxicidad , Miocitos Cardíacos/metabolismo , Nervio Vago/metabolismo , Nervio Vago/patología
14.
Endocrinol Metab (Seoul) ; 37(4): 630-640, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35927067

RESUMEN

BACKGRUOUND: High cardiorespiratory fitness (CRF) protects against age-related diseases. However, the mechanisms mediating the protective effect of high intrinsic CRF against metabolic, cardiac, and brain impairments in non-obese versus obese conditions remain incompletely understood. We aimed to identify the mechanisms through which high intrinsic CRF protects against metabolic, cardiac, and brain impairments in non-obese versus obese untrained rats. METHODS: Seven-week-old male Wistar rats were divided into two groups (n=8 per group) to receive either a normal diet or a highfat diet (HFD). At weeks 12 and 28, CRF, carbohydrate and fatty acid oxidation, cardiac function, and metabolic parameters were evaluated. At week 28, behavior tests were performed. At the end of week 28, rats were euthanized to collect heart and brain samples for molecular studies. RESULTS: The obese rats exhibited higher values for aging-related parameters than the non-obese rats, indicating that they experienced obesity-induced premature aging. High baseline CRF levels were positively correlated with several favorable metabolic, cardiac, and brain parameters at follow-up. Specifically, the protective effects of high CRF against metabolic, cardiac, and brain impairments were mediated by the modulation of body weight and composition, the lipid profile, substrate oxidation, mitochondrial function, insulin signaling, autophagy, apoptosis, inflammation, oxidative stress, cardiac function, neurogenesis, blood-brain barrier, synaptic function, accumulation of Alzheimer's disease-related proteins, and cognition. Interestingly, this effect was more obvious in HFD-fed rats. CONCLUSION: The protective effect of high CRF is mediated by the modulation of several mechanisms. These effects exhibit greater efficacy under conditions of obesity-induced premature aging.


Asunto(s)
Envejecimiento Prematuro , Capacidad Cardiovascular , Resistencia a la Insulina , Envejecimiento Prematuro/metabolismo , Envejecimiento Prematuro/prevención & control , Animales , Encéfalo/metabolismo , Dieta Alta en Grasa/efectos adversos , Masculino , Obesidad , Ratas , Ratas Wistar
15.
Acta Pharmacol Sin ; 43(1): 26-38, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33712720

RESUMEN

Mitochondria are extraordinarily dynamic organelles that have a variety of morphologies, the status of which are controlled by the opposing processes of fission and fusion. Our recent study shows that inhibition of excessive mitochondrial fission by Drp1 inhibitor (Mdivi-1) leads to a reduction in infarct size and left ventricular (LV) dysfunction following cardiac ischemia-reperfusion (I/R) injury in high fat-fed induced pre-diabetic rats. In the present study, we investigated the cardioprotective effects of a mitochondrial fusion promoter (M1) and a combined treatment (M1 and Mdivi-1) in pre-diabetic rats. Wistar rats were given a high-fat diet for 12 weeks to induce prediabetes. The rats then subjected to 30 min-coronary occlusions followed by reperfusion for 120 min. These rats were intravenously administered M1 (2 mg/kg) or M1 (2 mg/kg) combined with Mdivi-1 (1.2 mg/kg) prior to ischemia, during ischemia or at the onset of reperfusion. We showed that administration of M1 alone or in combination with Mdivi-1 prior to ischemia, during ischemia or at the onset of reperfusion all significantly attenuated cardiac mitochondrial ROS production, membrane depolarization, swelling and dynamic imbalance, leading to reduced arrhythmias and infarct size, resulting in improved LV function in pre-diabetic rats. In conclusion, the promotion of mitochondrial fusion at any time-points during cardiac I/R injury attenuated cardiac mitochondrial dysfunction and dynamic imbalance, leading to decreased infarct size and improved LV function in pre-diabetic rats.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Estado Prediabético/metabolismo , Animales , Diabetes Mellitus Experimental/inducido químicamente , Dieta Alta en Grasa/efectos adversos , Relación Dosis-Respuesta a Droga , Masculino , Dinámicas Mitocondriales/efectos de los fármacos , Estructura Molecular , Daño por Reperfusión Miocárdica/inducido químicamente , Estado Prediabético/inducido químicamente , Quinazolinonas/farmacología , Ratas , Ratas Wistar , Relación Estructura-Actividad
16.
Br J Pharmacol ; 179(6): 1220-1236, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34796473

RESUMEN

BACKGROUND AND PURPOSE: Chronic high-fat diet (HFD) intake instigates prediabetes and brain pathologies, which include cognitive decline and neuroinflammation. The myeloid differentiation factor 2 (MD-2)/toll-like receptor 4 (TLR4) complex plays a pivotal role in neuroinflammation. The MD-2 inhibitor (L6H21) reduces systemic inflammation and metabolic disturbances in HFD-induced prediabetes. However, the potential role of L6H21, and its comparison with metformin, on brain pathologies in HFD-induced prediabetes has never been investigated. EXPERIMENTAL APPROACH: Male Wistar rats were given either a normal diet (ND) (n = 8) or a HFD (n = 104) for 16 weeks. At the 13th week, ND-fed rats were given a vehicle, whereas HFD-fed rats were randomly divided into 13 subgroups. Each subgroup was given vehicle, L6H21 (three doses) or metformin (300-mg·kg-1 ·day-1 ) for 1, 2 or 4 weeks. Metabolic parameters, cognitive function, brain mitochondrial function, brain TLR4-MD-2 signalling, microglial morphology, brain oxidative stress, brain cell death and dendritic spine density were investigated. KEY RESULTS: HFD-fed rats developed prediabetes, neuroinflammation, brain pathologies and cognitive impairment. All doses of L6H21 and metformin given to HFD-fed rats at 2 and 4 weeks attenuated metabolic disturbance. CONCLUSION AND IMPLICATIONS: In rats, L6H21 and metformin restored cognition and attenuated brain pathologies dose and time-dependently. These results indicate a neuroprotective role of MD-2 inhibitor in a model of prediabetes.


Asunto(s)
Disfunción Cognitiva , Resistencia a la Insulina , Metformina , Estado Prediabético , Animales , Encéfalo/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/prevención & control , Dieta Alta en Grasa/efectos adversos , Masculino , Metformina/farmacología , Metformina/uso terapéutico , Estado Prediabético/tratamiento farmacológico , Estado Prediabético/metabolismo , Estado Prediabético/patología , Ratas , Ratas Wistar , Receptor Toll-Like 4/metabolismo
17.
Biochem Pharmacol ; 192: 114743, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34453902

RESUMEN

Doxorubicin (Dox) is widely used in chemotherapy regimens for several malignant conditions. Unfortunately, cumulative and irreversible cardiotoxicity of Dox is the most prominent adverse effect which limits its use. Several pharmacological interventions which exert antioxidant properties, including melatonin and metformin, have demonstrated beneficial effects against various cardiac pathological conditions. However, the exact molecular mechanisms underlying their cardioprotective effects are not completely understood. We hypothesized that treatment with either melatonin or metformin provides cardioprotection against Dox-induced cardiotoxicity through mitochondrial protection. Thirty-two male Wistar rats received 6 doses of either 0.9% normal saline solution (0.9% NSS, n = 8) or Dox (3 mg/kg, i.p., n = 24). The Dox-treated rats (n = 8/group) were co-treated with: 1) Vehicle (0.9% NSS), 2) Melatonin (10 mg/kg/day), and 3) Metformin (250 mg/kg/day) for 30 consecutive days via oral gavage. Following the treatment, left ventricular (LV) function, oxidative stress, inflammation, mitochondrial function, dynamics, biogenesis and bioenergetics, mitophagy, autophagy, and apoptosis were determined. Dox induced excessive oxidative stress, inflammation, autophagy, apoptosis, reduced mitochondrial function, dynamics balance, biogenesis, and bioenergetics leading to LV dysfunction. Treatment with either melatonin or metformin exerted equal measures of cardioprotection via reducing oxidative stress, inflammation, autophagy, apoptosis, and improved mitochondrial function, dynamics balance, biogenesis, and bioenergetics in the Dox-treated rats. Melatonin and metformin exerted both anti-cancer and cardioprotective properties, suggesting they have potential roles in concomitant therapy in cancer patients receiving Dox treatment.


Asunto(s)
Cardiotónicos/uso terapéutico , Cardiotoxicidad/prevención & control , Doxorrubicina/toxicidad , Melatonina/uso terapéutico , Metformina/uso terapéutico , Mitocondrias/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Animales , Antibióticos Antineoplásicos/toxicidad , Cardiotónicos/farmacología , Cardiotoxicidad/metabolismo , Línea Celular , Relación Dosis-Respuesta a Droga , Masculino , Melatonina/farmacología , Metformina/farmacología , Mitocondrias/metabolismo , Dinámicas Mitocondriales/fisiología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ratas , Ratas Wistar
18.
J Endocrinol ; 251(1): 27-39, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34265741

RESUMEN

High-fat diet (HFD) consumption induces prediabetes and left ventricular dysfunction through many pathways including cell death pathway like necroptosis. Although the benefit of necroptosis inhibitor (necrostatin-1 or Nec-1) in the brain of prediabetic rats was shown, the effects of Nec-1 on cardiac autonomic function, blood pressure, cardiac function, along with its mechanistic insight have not been investigated. Male Wistar rats were fed with either a normal diet (n = 8) or HFD (n = 24) for 12 weeks to induce prediabetes. Prediabetic rats were randomly assigned into three interventional groups (n = 8/group): (1) vehicle, (2) Nec-1 (1.65 mg/kg, sc injection), and (3) metformin (300 mg/kg, oral gavage feeding). Treatments lasted for 8 weeks. Normal saline was given to normal diet-fed rats and vehicle group. Metabolic parameters, cardiac function and biochemical parameters were assessed. Prediabetic rats exhibited peripheral metabolic impairment as indicated by increased body weight, hyperinsulinemia with euglycemia, and dyslipidemia. Prediabetic rats also had cardiac autonomic imbalance, high blood pressure, and cardiac dysfunction, together with cardiac mitochondrial dysfunction, mitochondrial dynamic imbalance, and increased necroptosis and apoptosis. Treatment with Nec-1 did not affect peripheral metabolic parameters, however, it effectively reduced cardiac autonomic imbalance, blood pressure, and cardiac dysfunction via reducing cardiac inflammation, necroptosis, mitochondrial dysfunction, and increased mitochondrial fusion. Treatment with metformin reduced peripheral metabolic impairment and cardiac dysfunction via decreased cardiac mitochondrial dysfunction, mitochondrial dynamic imbalance, and apoptosis. In summary, Nec-1 directly suppressed necroptosis, cardiac mitochondrial dysfunction, and increased mitochondrial fusion independent of peripheral metabolic function, leading to an improved cardiac function in prediabetic rats.


Asunto(s)
Imidazoles/farmacología , Indoles/farmacología , Mitocondrias Cardíacas/efectos de los fármacos , Estado Prediabético/inducido químicamente , Estado Prediabético/complicaciones , Disfunción Ventricular Izquierda/tratamiento farmacológico , Disfunción Ventricular Izquierda/etiología , Animales , Dieta Alta en Grasa/efectos adversos , Imidazoles/uso terapéutico , Indoles/uso terapéutico , Resistencia a la Insulina , Masculino , Metformina/farmacología , Obesidad/etiología , Distribución Aleatoria , Ratas , Ratas Wistar
19.
Neurotherapeutics ; 18(3): 2107-2125, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34312765

RESUMEN

Although doxorubicin (Dox) is an effective chemotherapy medication used extensively in the treatment of breast cancer, it frequently causes debilitating neurological deficits known as chemobrain. Donepezil (DPZ), an acetylcholinesterase inhibitor, provides therapeutic benefits in various neuropathological conditions. However, comprehensive mechanistic insights regarding the neuroprotection of DPZ on cognition and brain pathologies in a Dox-induced chemobrain model remain obscure. Here, we demonstrated that Dox-treated rats manifested conspicuous cognitive deficits and developed chemobrain pathologies as indicated by brain inflammatory and oxidative insults, glial activation, defective mitochondrial homeostasis, increased potential lesions associated with Alzheimer's disease, disrupted neurogenesis, loss of dendritic spines, and ultimately neuronal death through both apoptosis and necroptosis. Intervention with DPZ co-treatment completely restored cognitive function by attenuating these pathological conditions induced by DOX. We also confirmed that DPZ treatment does not affect the anti-cancer efficacy of Dox in breast cancer cells. Together, our findings suggest that DPZ treatment confers potential neuroprotection against Dox-induced chemobrain.


Asunto(s)
Antibióticos Antineoplásicos/toxicidad , Deterioro Cognitivo Relacionado con la Quimioterapia/prevención & control , Donepezilo/uso terapéutico , Doxorrubicina/toxicidad , Mediadores de Inflamación/antagonistas & inhibidores , Estrés Oxidativo/efectos de los fármacos , Animales , Deterioro Cognitivo Relacionado con la Quimioterapia/metabolismo , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Donepezilo/farmacología , Femenino , Humanos , Mediadores de Inflamación/metabolismo , Células MCF-7 , Masculino , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/fisiología , Ratas , Ratas Wistar , Resultado del Tratamiento
20.
Mitochondrion ; 59: 175-183, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34091078

RESUMEN

We aimed to compare mitochondrial function, mitochondrial dynamics, apoptosis, and necroptosis between odontogenic cysts/tumors, including radicular cysts, dentigerous cysts, ameloblastoma, vs. dental follicles as control. We demonstrated that mitochondrial dysregulation and imbalanced mitochondrial dynamics were observed in ameloblastoma. Apoptosis was increased in dentigerous cysts, and ameloblastoma, while necroptosis was suppressed in ameloblastoma. Necroptosis in radicular cysts was higher than that of control, suggesting that the inflammation-associated cell death occurred in radicular cysts. Our findings suggest ameloblastoma exhibited mitochondrial dysfunction, decreased mitochondrial fusion, and potential apoptosis. Therefore, alleviating mitochondrial dysregulation and apoptosis may be novel-targeted therapy for odontogenic cysts and tumors.


Asunto(s)
Ameloblastoma/patología , Quiste Dentígero/patología , Mitocondrias/metabolismo , Quiste Radicular/patología , Especies Reactivas de Oxígeno/metabolismo , Adolescente , Adulto , Anciano , Ameloblastoma/metabolismo , Estudios de Casos y Controles , Muerte Celular , Niño , Estudios Transversales , Quiste Dentígero/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Dinámicas Mitocondriales , Necroptosis , Quiste Radicular/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA