Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Diabetes ; 72(7): 884-897, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37186949

RESUMEN

Sphingolipids are thought to promote skeletal muscle insulin resistance. Deoxysphingolipids (dSLs) are atypical sphingolipids that are increased in the plasma of individuals with type 2 diabetes and cause ß-cell dysfunction in vitro. However, their role in human skeletal muscle is unknown. We found that dSL species are significantly elevated in muscle of individuals with obesity and type 2 diabetes compared with athletes and lean individuals and are inversely related to insulin sensitivity. Furthermore, we observed a significant reduction in muscle dSL content in individuals with obesity who completed a combined weight loss and exercise intervention. Increased dSL content in primary human myotubes caused a decrease in insulin sensitivity associated with increased inflammation, decreased AMPK phosphorylation, and altered insulin signaling. Our findings reveal a central role for dSL in human muscle insulin resistance and suggest dSLs as therapeutic targets for the treatment and prevention of type 2 diabetes. ARTICLE HIGHLIGHTS: Deoxysphingolipids (dSLs) are atypical sphingolipids elevated in the plasma of individuals with type 2 diabetes, and their role in muscle insulin resistance has not been investigated. We evaluated dSL in vivo in skeletal muscle from cross-sectional and longitudinal insulin-sensitizing intervention studies and in vitro in myotubes manipulated to synthesize higher dSLs. dSLs were increased in the muscle of people with insulin resistance, inversely correlated to insulin sensitivity, and significantly decreased after an insulin-sensitizing intervention; increased intracellular dSL concentrations cause myotubes to become more insulin resistant. Reduction of muscle dSL levels is a potential novel therapeutic target to prevent/treat skeletal muscle insulin resistance.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Resistencia a la Insulina/fisiología , Estudios Transversales , Músculo Esquelético , Esfingolípidos , Fibras Musculares Esqueléticas , Insulina , Obesidad
2.
Diabetes ; 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37094369

RESUMEN

Sphingolipids are thought to promote skeletal muscle insulin resistance. 1-Deoxysphingolipids (dSL) are atypical sphingolipids that are increased in plasma of individuals with type 2 diabetes and cause ß-cell dysfunction in vitro. However, their role in human skeletal muscle in unknown. We found that dSL species are significantly elevated in muscle of individuals with obesity and type 2 diabetes compared to athletes and lean individuals and are inversely related to insulin sensitivity. Furthermore, we observed a significant reduction in muscle dSL content in individuals with obesity who completed a combined weight loss and exercise intervention. Increased dSL content in primary human myotubes caused a decrease in insulin sensitivity associated with increased inflammation, decreased AMP-activated kinase (AMPK) phosphorylation, and altered insulin signaling. Our findings reveal a central role for dSL in human muscle insulin resistance and suggest dSL as therapeutic targets for the treatment and prevention of type 2 diabetes.

3.
Diabetologia ; 66(5): 873-883, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36790478

RESUMEN

AIMS/HYPOTHESIS: Although insulin resistance often leads to type 2 diabetes mellitus, its early stages are often unrecognised, thus reducing the probability of successful prevention and intervention. Moreover, treatment efficacy is affected by the genetics of the individual. We used gene expression profiles from a cross-sectional study to identify potential candidate genes for the prediction of diabetes risk and intervention response. METHODS: Using a multivariate regression model, we linked gene expression profiles of human skeletal muscle and intermuscular adipose tissue (IMAT) to fasting glucose levels and glucose infusion rate. Based on the expression patterns of the top predictive genes, we characterised and compared individual gene expression with clinical classifications using k-nearest neighbour clustering. The predictive potential of the candidate genes identified was validated using muscle gene expression data from a longitudinal intervention study. RESULTS: We found that genes with a strong association with clinical measures clustered into three distinct expression patterns. Their predictive values for insulin resistance varied substantially between skeletal muscle and IMAT. Moreover, we discovered that individual gene expression-based classifications may differ from classifications based predominantly on clinical variables, indicating that participant stratification may be imprecise if only clinical variables are used for classification. Of the 15 top candidate genes, ST3GAL2, AASS, ARF1 and the transcription factor SIN3A are novel candidates for predicting a refined diabetes risk and intervention response. CONCLUSION/INTERPRETATION: Our results confirm that disease progression and successful intervention depend on individual gene expression states. We anticipate that our findings may lead to a better understanding and prediction of individual diabetes risk and may help to develop individualised intervention strategies.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Resistencia a la Insulina/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Pronóstico , Estudios Transversales , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Glucosa/metabolismo , Biomarcadores/metabolismo , Perfilación de la Expresión Génica
4.
J Lipid Res ; 63(10): 100270, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36030929

RESUMEN

Serum ceramides, especially C16:0 and C18:0 species, are linked to CVD risk and insulin resistance, but details of this association are not well understood. We performed this study to quantify a broad range of serum sphingolipids in individuals spanning the physiologic range of insulin sensitivity and to determine if dihydroceramides cause insulin resistance in vitro. As expected, we found that serum triglycerides were significantly greater in individuals with obesity and T2D compared with athletes and lean individuals. Serum ceramides were not significantly different within groups but, using all ceramide data relative to insulin sensitivity as a continuous variable, we observed significant inverse relationships between C18:0, C20:0, and C22:0 species and insulin sensitivity. Interestingly, we found that total serum dihydroceramides and individual species were significantly greater in individuals with obesity and T2D compared with athletes and lean individuals, with C18:0 species showing the strongest inverse relationship to insulin sensitivity. Finally, we administered a physiological mix of dihydroceramides to primary myotubes and found decreased insulin sensitivity in vitro without changing the overall intracellular sphingolipid content, suggesting a direct effect on insulin resistance. These data extend what is known regarding serum sphingolipids and insulin resistance and show the importance of serum dihydroceramides to predict and promote insulin resistance in humans.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Resistencia a la Insulina/fisiología , Ceramidas , Esfingolípidos , Obesidad , Triglicéridos
5.
Diabetologia ; 64(1): 168-180, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33128577

RESUMEN

AIMS/HYPOTHESIS: Subcellular localisation is an important factor in the known impact of bioactive lipids, such as diacylglycerol and sphingolipids, on insulin sensitivity in skeletal muscle; yet, the role of localised intramuscular triacylglycerol (IMTG) is yet to be described. Excess accumulation of IMTG in skeletal muscle is associated with insulin resistance, and we hypothesised that differences in subcellular localisation and composition of IMTG would relate to metabolic health status in humans. METHODS: We evaluated subcellular localisation of IMTG in lean participants, endurance-trained athletes, individuals with obesity and individuals with type 2 diabetes using LC-MS/MS of fractionated muscle biopsies and insulin clamps. RESULTS: Insulin sensitivity was significantly different between each group (athletes>lean>obese>type 2 diabetes; p < 0.001). Sarcolemmal IMTG was significantly greater in individuals with obesity and type 2 diabetes compared with lean control participants and athletes, but individuals with type 2 diabetes were the only group with significantly increased saturated IMTG. Sarcolemmal IMTG was inversely related to insulin sensitivity. Nuclear IMTG was significantly greater in individuals with type 2 diabetes compared with lean control participants and athletes, and total and saturated IMTG localised in the nucleus had a significant inverse relationship with insulin sensitivity. Total cytosolic IMTG was not different between groups, but saturated cytosolic IMTG species were significantly increased in individuals with type 2 diabetes compared with all other groups. There were no significant differences between groups for IMTG concentration in the mitochondria/endoplasmic reticulum. CONCLUSIONS/INTERPRETATION: These data reveal previously unknown differences in subcellular IMTG localisation based on metabolic health status and indicate the influence of sarcolemmal and nuclear IMTG on insulin sensitivity. Additionally, these studies suggest saturated IMTG may be uniquely deleterious for muscle insulin sensitivity. Graphical abstract.


Asunto(s)
Resistencia a la Insulina/fisiología , Músculo Esquelético/química , Músculo Esquelético/ultraestructura , Triglicéridos/análisis , Triglicéridos/química , Adulto , Atletas , Núcleo Celular/química , Citosol/química , Diabetes Mellitus Tipo 2/metabolismo , Grasas de la Dieta/administración & dosificación , Diglicéridos/análisis , Retículo Endoplásmico/química , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias Musculares/química , Obesidad/metabolismo , Resistencia Física , Sarcolema/química
6.
Am J Physiol Endocrinol Metab ; 316(5): E866-E879, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30620635

RESUMEN

Intermuscular adipose tissue (IMAT) is negatively related to insulin sensitivity, but a causal role of IMAT in the development of insulin resistance is unknown. IMAT was sampled in humans to test for the ability to induce insulin resistance in vitro and characterize gene expression to uncover how IMAT may promote skeletal muscle insulin resistance. Human primary muscle cells were incubated with conditioned media from IMAT, visceral (VAT), or subcutaneous adipose tissue (SAT) to evaluate changes in insulin sensitivity. RNAseq analysis was performed on IMAT with gene expression compared with skeletal muscle and SAT, and relationships to insulin sensitivity were determined in men and women spanning a wide range of insulin sensitivity measured by hyperinsulinemic-euglycemic clamp. Conditioned media from IMAT and VAT decreased insulin sensitivity similarly compared with SAT. Multidimensional scaling analysis revealed distinct gene expression patterns in IMAT compared with SAT and muscle. Pathway analysis revealed that IMAT expression of genes in insulin signaling, oxidative phosphorylation, and peroxisomal metabolism related positively to donor insulin sensitivity, whereas expression of macrophage markers, inflammatory cytokines, and secreted extracellular matrix proteins were negatively related to insulin sensitivity. Perilipin 5 gene expression suggested greater IMAT lipolysis in insulin-resistant individuals. Combined, these data show that factors secreted from IMAT modulate muscle insulin sensitivity, possibly via secretion of inflammatory cytokines and extracellular matrix proteins, and by increasing local FFA concentration in humans. These data suggest IMAT may be an important regulator of skeletal muscle insulin sensitivity and could be a novel therapeutic target for skeletal muscle insulin resistance.


Asunto(s)
Tejido Adiposo/metabolismo , Resistencia a la Insulina/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Adulto , Atletas , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Técnica de Clampeo de la Glucosa , Humanos , Grasa Intraabdominal/metabolismo , Masculino , Persona de Mediana Edad , Obesidad/metabolismo , Cultivo Primario de Células , Conducta Sedentaria , Análisis de Secuencia de ARN , Grasa Subcutánea/metabolismo
7.
JCI Insight ; 3(3)2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29415895

RESUMEN

BACKGROUND: Accumulation of diacylglycerol (DAG) and sphingolipids is thought to promote skeletal muscle insulin resistance by altering cellular signaling specific to their location. However,the subcellular localization of bioactive lipids in human skeletal muscle is largely unknown. METHODS: We evaluated subcellular localization of skeletal muscle DAGs and sphingolipids in lean individuals (n = 15), endurance-trained athletes (n = 16), and obese men and women with (n = 12) and without type 2 diabetes (n = 15). Muscle biopsies were fractionated into sarcolemmal, cytosolic, mitochondrial/ER, and nuclear compartments. Lipids were measured using liquid chromatography tandem mass spectrometry, and insulin sensitivity was measured using hyperinsulinemic-euglycemic clamp. RESULTS: Sarcolemmal 1,2-DAGs were not significantly related to insulin sensitivity. Sarcolemmal ceramides were inversely related to insulin sensitivity, with a significant relationship found for the C18:0 species. Sarcolemmal sphingomyelins were also inversely related to insulin sensitivity, with the strongest relationships found for the C18:1, C18:0, and C18:2 species. In the mitochondrial/ER and nuclear fractions, 1,2-DAGs were positively related to, while ceramides were inversely related to, insulin sensitivity. Cytosolic lipids as well as 1,3-DAG, dihydroceramides, and glucosylceramides in any compartment were not related to insulin sensitivity. All sphingolipids but only specific DAGs administered to isolated mitochondria decreased mitochondrial state 3 respiration. CONCLUSION: These data reveal previously unknown differences in subcellular localization of skeletal muscle DAGs and sphingolipids that relate to whole-body insulin sensitivity and mitochondrial function in humans. These data suggest that whole-cell concentrations of lipids obscure meaningful differences in compartmentalization and suggest that subcellular localization of lipids should be considered when developing therapeutic interventions to treat insulin resistance. FUNDING: National Institutes of Health General Clinical Research Center (RR-00036), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) (R01DK089170), NIDDK (T32 DK07658), and Colorado Nutrition Obesity Research Center (P30DK048520).


Asunto(s)
Diglicéridos/metabolismo , Resistencia a la Insulina/fisiología , Músculo Esquelético/metabolismo , Esfingolípidos/metabolismo , Adulto , Biopsia , Glucemia/análisis , Estudios Transversales , Citosol/metabolismo , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/metabolismo , Diglicéridos/análisis , Retículo Endoplásmico/metabolismo , Femenino , Técnica de Clampeo de la Glucosa , Prueba de Tolerancia a la Glucosa , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/patología , Obesidad/sangre , Obesidad/metabolismo , Sarcolema/metabolismo , Esfingolípidos/análisis
8.
Am J Physiol Endocrinol Metab ; 314(2): E152-E164, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28978544

RESUMEN

Intramuscular triglyceride (IMTG) concentration is elevated in insulin-resistant individuals and was once thought to promote insulin resistance. However, endurance-trained athletes have equivalent concentration of IMTG compared with individuals with type 2 diabetes, and have very low risk of diabetes, termed the "athlete's paradox." We now know that IMTG synthesis is positively related to insulin sensitivity, but the exact mechanisms for this are unclear. To understand the relationship between IMTG synthesis and insulin sensitivity, we measured IMTG synthesis in obese control subjects, endurance-trained athletes, and individuals with type 2 diabetes during rest, exercise, and recovery. IMTG synthesis rates were positively related to insulin sensitivity, cytosolic accumulation of DAG, and decreased accumulation of C18:0 ceramide and glucosylceramide. Greater rates of IMTG synthesis in athletes were not explained by alterations in FFA concentration, DGAT1 mRNA expression, or protein content. IMTG synthesis during exercise in Ob and T2D indicate utilization as a fuel despite unchanged content, whereas IMTG concentration decreased during exercise in athletes. mRNA expression for genes involved in lipid desaturation and IMTG synthesis were increased after exercise and recovery. Further, in a subset of individuals, exercise decreased cytosolic and membrane di-saturated DAG content, which may help explain insulin sensitization after acute exercise. These data suggest IMTG synthesis rates may influence insulin sensitivity by altering intracellular lipid localization, and decreasing specific ceramide species that promote insulin resistance.


Asunto(s)
Ejercicio Físico/fisiología , Lipogénesis/fisiología , Músculo Esquelético/metabolismo , Triglicéridos/metabolismo , Adulto , Atletas , Transporte Biológico , Estudios de Casos y Controles , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Femenino , Humanos , Resistencia a la Insulina/fisiología , Metabolismo de los Lípidos/fisiología , Masculino , Obesidad/complicaciones , Obesidad/metabolismo , Obesidad/fisiopatología , Resistencia Física/fisiología , Descanso
9.
Mol Cancer Res ; 14(9): 869-82, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27259715

RESUMEN

UNLABELLED: There are limited therapy options for advanced thyroid cancer, including papillary and anaplastic thyroid cancer (PTC and ATC). Focal adhesion kinase (FAK) regulates cell signaling by functioning as a scaffold and kinase. Previously, we demonstrated that FAK is overexpressed and activated in thyroid cancer cells and human PTC clinical specimens. However, it remains unclear whether patients with advanced thyroid cancer will benefit from FAK inhibition. Therefore, the dual functions of FAK in mediating protumorigenic processes and thyroid tumorigenesis were investigated. Evidence here shows that FAK expression predominantly regulates thyroid cancer cell growth, viability, and anchorage-independent growth. FAK inhibition, with PF-562,271 treatment, modestly reduced tumor volumes, while FAK depletion, through shRNA knockdown, significantly reduced tumor volumes in vivo A role for FAK expression in tumor establishment was demonstrated in a model of PTC, where FAK knockdown tumors did not develop. FAK depletion also led to a significant decrease in overall metastatic burden. Interestingly, pretreatment with a FAK inhibitor resulted in a paradoxical increase in metastasis in a model of ATC, but decreased metastasis in a model of PTC. These data provide the first evidence that FAK expression is critical for the regulation of thyroid tumorigenic functions. IMPLICATIONS: This study demonstrates that FAK expression, but not kinase activity alone, predominantly mediates thyroid tumor growth and metastasis, indicating that targeting the scaffolding function(s) of FAK may be an important therapeutic strategy for advanced thyroid cancer, as well as other FAK-dependent tumors. Mol Cancer Res; 14(9); 869-82. ©2016 AACR.


Asunto(s)
Quinasa 1 de Adhesión Focal/biosíntesis , Neoplasias de la Tiroides/enzimología , Neoplasias de la Tiroides/patología , Animales , Carcinogénesis/metabolismo , Carcinogénesis/patología , Procesos de Crecimiento Celular/fisiología , Línea Celular Tumoral , Femenino , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Quinasa 1 de Adhesión Focal/metabolismo , Xenoinjertos , Humanos , Ratones , Ratones Desnudos , Metástasis de la Neoplasia , Transducción de Señal , Neoplasias de la Tiroides/genética
10.
J Appl Physiol (1985) ; 120(11): 1355-63, 2016 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-27032901

RESUMEN

Several recent reports indicate that the balance of skeletal muscle phosphatidylcholine (PC) and phosphatidylethanolamine (PE) is a key determinant of muscle contractile function and metabolism. The purpose of this study was to determine relationships between skeletal muscle PC, PE and insulin sensitivity, and whether PC and PE are dynamically regulated in response to acute exercise in humans. Insulin sensitivity was measured via intravenous glucose tolerance in sedentary obese adults (OB; n = 14), individuals with type 2 diabetes (T2D; n = 15), and endurance-trained athletes (ATH; n = 15). Vastus lateralis muscle biopsies were obtained at rest, immediately after 90 min of cycle ergometry at 50% maximal oxygen consumption (V̇o2 max), and 2-h postexercise (recovery). Skeletal muscle PC and PE were measured via infusion-based mass spectrometry/mass spectrometry analysis. ATH had greater levels of muscle PC and PE compared with OB and T2D (P < 0.05), with total PC and PE positively relating to insulin sensitivity (both P < 0.05). Skeletal muscle PC:PE ratio was elevated in T2D compared with OB and ATH (P < 0.05), tended to be elevated in OB vs. ATH (P = 0.07), and was inversely related to insulin sensitivity among the entire cohort (r = -0.43, P = 0.01). Muscle PC and PE were altered by exercise, particularly after 2 h of recovery, in a highly group-specific manner. However, muscle PC:PE ratio remained unchanged in all groups. In summary, total muscle PC and PE are positively related to insulin sensitivity while PC:PE ratio is inversely related to insulin sensitivity in humans. A single session of exercise significantly alters skeletal muscle PC and PE levels, but not PC:PE ratio.


Asunto(s)
Ejercicio Físico/fisiología , Resistencia a la Insulina/fisiología , Insulina/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Adulto , Atletas , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Femenino , Prueba de Tolerancia a la Glucosa/métodos , Humanos , Masculino , Consumo de Oxígeno/fisiología
11.
PLoS One ; 11(3): e0150148, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26999667

RESUMEN

Over-nutrition has fuelled the global epidemic of type 2 diabetes, but the role of individual macronutrients to the diabetogenic process is not well delineated. We aimed to examine the impact of dietary fatty acid intake on fasting and 2-hour plasma glucose concentrations, as well as tissue-specific insulin action governing each. Normoglycemic controls (n = 15), athletes (n = 14), and obese (n = 23), as well as people with prediabetes (n = 10) and type 2 diabetes (n = 11), were queried about their habitual diet using a Food Frequency Questionnaire. All subjects were screened by an oral glucose tolerance test (OGTT) and studied using the hyperinsulinemic/euglycemic clamp with infusion of 6,62H2-glucose. Multiple regression was performed to examine relationships between dietary fat intake and 1) fasting plasma glucose, 2) % suppression of endogenous glucose production, 3) 2-hour post-OGTT plasma glucose, and 4) skeletal muscle insulin sensitivity (glucose rate of disappearance (Rd) and non-oxidative glucose disposal (NOGD)). The %kcal from saturated fat (SFA) was positively associated with fasting (ß = 0.303, P = 0.018) and 2-hour plasma glucose (ß = 0.415, P<0.001), and negatively related to % suppression of hepatic glucose production (ß = -0.245, P = 0.049), clamp Rd (ß = -0.256, P = 0.001) and NOGD (ß = -0.257, P = 0.001). The %kcal from trans fat was also negatively related to clamp Rd (ß = -0.209, P = 0.008) and NOGD (ß = -0.210, P = 0.008). In contrast, the %kcal from polyunsaturated fat (PUFA) was negatively associated with 2-hour glucose levels (ß = -0.383, P = 0.001), and positively related to Rd (ß = 0.253, P = 0.007) and NOGD (ß = 0.246, P = 0.008). Dietary advice to prevent diabetes should consider the underlying pathophysiology of the prediabetic state.


Asunto(s)
Glucemia/metabolismo , Grasas de la Dieta/metabolismo , Ayuno/sangre , Homeostasis , Estado Prediabético/sangre , Estado Prediabético/terapia , Adulto , Ayuno/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Femenino , Prueba de Tolerancia a la Glucosa , Humanos , Masculino , Persona de Mediana Edad , Estado Prediabético/metabolismo , Análisis de Regresión
12.
Diabetologia ; 59(4): 785-98, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26739815

RESUMEN

AIMS/HYPOTHESES: Ceramides and other sphingolipids comprise a family of lipid molecules that accumulate in skeletal muscle and promote insulin resistance. Chronic endurance exercise training decreases muscle ceramides and other sphingolipids, but less is known about the effects of a single bout of exercise. METHODS: We measured basal relationships and the effect of acute exercise (1.5 h at 50% [Formula: see text]) and recovery on muscle sphingolipid content in obese volunteers, endurance trained athletes and individuals with type 2 diabetes. RESULTS: Muscle C18:0 ceramide (p = 0.029), dihydroceramide (p = 0.06) and glucosylceramide (p = 0.03) species were inversely related to insulin sensitivity without differences in total ceramide, dihydroceramide, and glucosylceramide concentration. Muscle C18:0 dihydroceramide correlated with markers of muscle inflammation (p = 0.04). Transcription of genes encoding sphingolipid synthesis enzymes was higher in athletes, suggesting an increased capacity for sphingolipid synthesis. The total concentration of muscle ceramides and sphingolipids increased during exercise and then decreased after recovery, during which time ceramide levels reduced to significantly below basal levels. CONCLUSIONS/INTERPRETATION: These data suggest ceramide and other sphingolipids containing stearate (18:0) are uniquely related to insulin resistance in skeletal muscle. Recovery from an exercise bout decreased muscle ceramide concentration; this may represent a mechanism promoting the insulin-sensitising effects of acute exercise.


Asunto(s)
Ejercicio Físico/fisiología , Músculo Esquelético/metabolismo , Descanso/fisiología , Esfingolípidos/metabolismo , Adulto , Western Blotting , Ceramidas/metabolismo , Humanos , Resistencia a la Insulina/fisiología
13.
Am J Physiol Endocrinol Metab ; 309(4): E398-408, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26126684

RESUMEN

Ceramides and sphingolipids are a family of lipid molecules that circulate in serum and accumulate in skeletal muscle, promoting insulin resistance. Plasma ceramide and dihydroceramide are related to insulin resistance, yet less is known regarding other ceramide and sphingolipid species. Despite its association with insulin sensitivity, chronic endurance exercise training does not change plasma ceramide and sphingolipid content, with little known regarding a single bout of exercise. We measured basal relationships and the effect of acute exercise (1.5 h at 50% V̇o2 max) and recovery on serum ceramide and sphingolipid content in sedentary obese individuals, endurance-trained athletes, and individuals with type 2 diabetes (T2D). Basal serum C18:0, C20:0, and C24:1 ceramide and C18:0 and total dihydroceramide were significantly higher in T2D and, along with C16:0 ceramide and C18:0 sphingomyelin, correlated positively with insulin resistance. Acute exercise significantly increased serum ceramide, glucosylceramide, and GM3 gangliosides, which largely decreased to basal values in recovery. Sphingosine 1-phosphate and sphingomyelin did not change during exercise but decreased below basal values in recovery. Serum C16:0 and C18:0 ceramide and C18:0 sphingomyelin, but not the total concentrations of either of them, were positively correlated with markers of muscle NF-κB activation, suggesting that specific species activate intracellular inflammation. Interestingly, a subset of sphingomyelin species, notably C14:0, C22:3, and C24:4 species, was positively associated with insulin secretion and glucose tolerance. Together, these data show that unique ceramide and sphingolipid species associate with either protective or deleterious features for diabetes and could provide novel therapeutic targets for the future.


Asunto(s)
Ejercicio Físico/fisiología , Resistencia a la Insulina/fisiología , Esfingolípidos/sangre , Adulto , Atletas , Glucemia/metabolismo , Ceramidas/sangre , Ceramidas/metabolismo , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/metabolismo , Prueba de Esfuerzo , Femenino , Humanos , Masculino , Obesidad/sangre , Obesidad/metabolismo , Resistencia Física/fisiología , Recuperación de la Función/fisiología , Conducta Sedentaria
14.
J Clin Endocrinol Metab ; 99(7): E1154-62, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24731008

RESUMEN

OBJECTIVE: Abnormal endogenous glucose production (EGP) is a characteristic feature in people with impaired fasting glucose (IFG). We sought to determine whether impaired hepatic glucose sensing contributes to abnormal EGP in IFG and whether it could be experimentally restored. METHODS: Glucose production (rate of appearance; Ra) and flux (glucose cycling) were assessed during a hyperglycemic-euinsulinemic somatostatin clamp with an infusion of [6,6-(2)H2-]glucose and [2-(2)H]glucose before and after enhanced hepatic glucokinase activity via an infusion of low-dose fructose in people with IFG and normal glucose tolerance (NGT). RESULTS: During euglycemia, neither endogenous glucose production [(6,6-(2)H2)-glucose Ra; P = 0.53] or total glucose output (TGO; [2-(2)H]-glucose Ra; P = .12) was different between groups, but glucose cycling ([2-(2)H]glucose Ra to [6,6-(2)H2-]glucose Ra; a surrogate measure of hepatic glucokinase activity in the postabsorptive state) was lower in IFG than NGT (P = .04). Hyperglycemia suppressed EGP more in NGT than IFG (P < .01 for absolute or relative suppression, NGT vs IFG), whereas TGO decreased similarly in both groups (P = .77). The addition of fructose completely suppressed EGP in IFG (P < .01) and tended to do the same to TGO (P = .01; no such changes in NGT, P = .39-.55). Glucose cycling (which reflects glucose-6-phosphatase activity during glucose infusion) was similar in IFG and NGT (P = .51) during hyperglycemia and was unchanged and comparable between groups with the addition of fructose (P = .24). CONCLUSIONS: In summary, glucose sensing is impaired in IFG but can be experimentally restored with low-dose fructose. Glucokinase activation may prove to be a novel strategy for the prevention of diabetes in this high-risk group.


Asunto(s)
Glucemia/metabolismo , Ayuno/metabolismo , Intolerancia a la Glucosa/metabolismo , Hígado/metabolismo , Estado Prediabético/metabolismo , Adulto , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Fructosa/administración & dosificación , Técnica de Clampeo de la Glucosa , Prueba de Tolerancia a la Glucosa , Humanos , Hiperglucemia/metabolismo , Masculino , Somatostatina/administración & dosificación
15.
PLoS One ; 8(7): e69991, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23922885

RESUMEN

AIMS/HYPOTHESIS: Glucose sensing (eg. glucokinase activity) becomes impaired in the development of type 2 diabetes, the etiology of which is unclear. Estrogen can stimulate glucokinase activity, whereas the pervasive environmental pollutant bisphenol A (BPA) can inhibit estrogen action, hence we aimed to determine the effect of BPA on glucokinase activity directly. METHODS: To evaluate a potential acute effect on hepatic glucokinase activity, BPA in water (n = 5) vs. water alone (n = 5) was administered at the EPA's purported "safe dose" (50 µg/kg) by gavage to lean 6-month old male C57BL/6 mice. Two hours later, animals were euthanized and hepatic glucokinase activity measured over glucose levels from 1-20 mmol/l in liver homogenate. To determine the effect of chronic BPA exposure on hepatic glucokinase activity, lean 6-month old male C57BL/6 mice were provided with water (n = 15) or water with 1.75 mM BPA (∼50 µg/kg/day; n = 14) for 2 weeks. Following the 2-week exposure, animals were euthanized and glucokinase activity measured as above. RESULTS: Hepatic glucokinase activity was signficantly suppressed after 2 hours in animals given an oral BPA bolus compared to those who received only water (p = 0.002-0.029 at glucose 5-20 mmol/l; overall treatment effect p<0.001). Exposure to BPA over 2 weeks also suppressed hepatic glucokinase activity in exposed vs. unexposed mice (overall treatment effect, p = 0.003). In both experiments, the Hill coefficient was higher and Vmax lower in mice treated with BPA. CONCLUSIONS/INTERPRETATION: Both acute and chronic exposure to BPA significantly impair hepatic glucokinase activity and function. These findings identify a potential mechanism for how BPA may increase risk for diabetes.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Glucosa/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Fenoles/toxicidad , Animales , Ratones Endogámicos C57BL
16.
Diabetes ; 61(12): 3156-66, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22966072

RESUMEN

Smoking is the most common cause of preventable morbidity and mortality in the United States, in part because it is an independent risk factor for the development of insulin resistance and type 2 diabetes. However, mechanisms responsible for smoking-induced insulin resistance are unclear. In this study, we found smokers were less insulin sensitive compared with controls, which increased after either 1 or 2 weeks of smoking cessation. Improvements in insulin sensitivity after smoking cessation occurred with normalization of IRS-1(ser636) phosphorylation. In muscle cell culture, nicotine exposure significantly increased IRS-1(ser636) phosphorylation and decreased insulin sensitivity, recapitulating the phenotype of smoking-induced insulin resistance in humans. The two pathways known to stimulate IRS-1(ser636) phosphorylation (p44/42 mitogen-activated protein kinase [MAPK] and mammalian target of rapamycin [mTOR]) were both stimulated by nicotine in culture. Inhibition of mTOR, but not p44/42 MAPK, during nicotine exposure prevented IRS-1(ser636) phosphorylation and normalized insulin sensitivity. These data indicate nicotine induces insulin resistance in skeletal muscle by activating mTOR. Therapeutic agents designed to oppose skeletal muscle mTOR activation may prevent insulin resistance in humans who are unable to stop smoking or are chronically exposed to secondhand smoke.


Asunto(s)
Resistencia a la Insulina/fisiología , Fumar/efectos adversos , Adulto , Western Blotting , Femenino , Humanos , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Resistencia a la Insulina/genética , Masculino , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Nicotina/farmacología , Fosforilación/efectos de los fármacos , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Adulto Joven
17.
Thyroid ; 20(10): 1103-11, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20860424

RESUMEN

BACKGROUND: The vitamin D receptor (VDR) has been studied as a novel target for cancer therapy in many tissue types as VDR ligands decrease cell proliferation in vitro and decrease tumor growth in vivo in sensitive cells. The objective of this study was to analyze the response to VDR agonist therapy in a panel of validated thyroid cancer cells and assess genetic markers predicting sensitivity and resistance to calcitriol and the noncalcemic analog DP006. METHODS: Thyroid cancer cell lines were analyzed for VDR and RXR protein by Western blot. Cell growth after VDR agonist treatment (calcitriol or DP006) was assessed after 6 days of treatment by viable cell assay. To investigate calcitriol/DP006 resistance in VDR-expressing cells, the VDR was sequenced and 1-α and 24-hydroxylase mRNA expression was assessed. RESULTS: VDR protein was variably expressed in the thyroid cancer cell lines and its presence was not sufficient for decreased viable cell count in response to calcitriol or DP006. The most sensitive cells (TPC1) have an ff FokI VDR polymorphism and the most resistant cells (HTh7 and 8505C) have an FF FokI VDR. This is a unique finding given that the balance of the literature of VDR polymorphisms describes an association of the ff FokI polymorphism with cancer risk and/or decreased VDR transactivation. 1-α and 24-hydroxylase mRNA expression before and after VDR agonist therapy was examined. 1-α-Hydroxylase levels did not change after calcitriol treatment. However, we found that higher baseline 24-hydroxylase levels and/or lower stimulation of 24-hydroxylase levels after calcitriol treatment were associated with relative resistance to calcitriol/DP006. CONCLUSIONS: The VDR represents a novel therapeutic target in poorly differentiated thyroid cancer; however, the efficacy of VDR agonist therapy to decrease viable thyroid cancer cell count cannot be predicted solely on the presence of the VDR. The FF FokI VDR genotype and high baseline 24-hydroxylase levels were associated with relative resistance to calcitriol and DP006. Therefore, identifiable markers of sensitivity or resistance to VDR agonist therapy may allow for a personalized use of these agents in poorly differentiated thyroid cancer.


Asunto(s)
Calcitriol/uso terapéutico , Receptores de Calcitriol/agonistas , Neoplasias de la Tiroides/tratamiento farmacológico , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/metabolismo , Secuencia de Bases , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Resistencia a Antineoplásicos , Humanos , Polimorfismo Genético , Receptores de Calcitriol/efectos de los fármacos , Receptores de Calcitriol/genética , Receptores X Retinoide/genética , Esteroide Hidroxilasas/metabolismo , Neoplasias de la Tiroides/genética , Vitamina D/análogos & derivados , Vitamina D/uso terapéutico , Vitamina D3 24-Hidroxilasa
18.
Thyroid ; 19(8): 825-35, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19500021

RESUMEN

BACKGROUND: The mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway plays an important role in papillary and anaplastic thyroid cancer (PTC and ATC) due to activating mutations in BRAF, RAS, or rearrangements in RET/PTC1. The objective of this study was to thoroughly test whether the BRAF V600E mutation predicts response to mitogen-activated protein kinase kinase 1/2 (MKK1/2) inhibition, as shown in other tumor types, using an authenticated panel of thyroid cancer cell lines. METHODS: PTC and ATC cells harboring distinct mutations in the MAPK pathway were treated with two different inhibitors selective for MKK1/2 (CI-1040 or U0126). The consequences of MKK1/2 inhibition on cell growth, survival, invasion, and MAPK signaling was determined. RESULTS: Inhibition of MKK1/2 using CI-1040 or U0126 differentially inhibits the growth of a panel of PTC and ATC cell lines in two-dimensional culture, with those harboring the BRAF V600E mutation (SW1736) or BRAF-V600E/PI3K-E542K mutations (K1) being the most sensitive, the RET/PTC1 rearrangement (TPC1) and BRAF V600E mutant (BCPAP), intermediate, and the HRAS-G13R mutant (C643), the least sensitive. Growth of these cells is more sensitive to MKK1/2 inhibition when grown in 2% versus 10% serum. Baseline levels of phospho-ERK1/2 were similar in all of the cell lines, and inhibition phospho-ERK1/2 did not predict sensitivity to MKK1/2 inhibition. When cells are grown in three-dimensional culture, MKK1/2 inhibition of growth correlates with mutational status (BRAF > RET/PTC1 > RAS). Finally, PTC and ATC invasiveness is differentially inhibited by CI-1040, which is independent of tumor type or mutation present. CONCLUSIONS: Different mutations in the MAPK pathway play distinct roles in the growth and invasion of thyroid cancer cells. These results indicate that MKK1/2 inhibitors have the potential to inhibit thyroid cancer growth and invasion, but that responses differ based on mutation status and growth conditions.


Asunto(s)
Carcinoma/tratamiento farmacológico , Carcinoma/enzimología , Regulación Neoplásica de la Expresión Génica , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 2/antagonistas & inhibidores , Sistema de Señalización de MAP Quinasas , Mutación , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/enzimología , Benzamidas/farmacología , Butadienos/farmacología , Carcinoma/patología , Línea Celular Tumoral , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/farmacología , Humanos , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/metabolismo , Nitrilos/farmacología , Transducción de Señal , Neoplasias de la Tiroides/patología
19.
J Clin Endocrinol Metab ; 94(6): 2199-203, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19293266

RESUMEN

CONTEXT: Focal adhesion kinase (FAK) and Src are overexpressed and activated in many cancers and have been associated with tumor progression. The role of the Src-FAK complex has not been characterized in papillary and anaplastic thyroid cancer (PTC and ATC). OBJECTIVE: The goal of this study was to determine the role of Src and FAK in the growth and invasion of PTC and ATC. DESIGN: PTC and ATC cells were treated with the oral Src inhibitor, AZD0530, to determine the consequences of Src inhibition using growth and invasion assays. FAK and phospho-FAK levels were analyzed in cell lines as well as in PTC tumor samples. RESULTS: AZD0530 treatment inhibited the growth and invasion in four of five thyroid cancer cell lines, and inhibition did not correlate with basal levels of phospho-Src. Instead, we show for the first time that FAK, a critical substrate and effector of Src, is phosphorylated at tyrosine residue 861 (pY861) in PTC and ATC cells, and high levels of phospho-FAK correlate with AZD0530 sensitivity. We further showed that pY861-FAK phosphorylation is Src-dependent. Sensitivity to AZD0530 was confirmed using a preclinical three-dimensional culture model. Phospho-ERK1/2 was not affected by AZD0530, indicating that Src signaling does not require MAPK. Finally, FAK and pY861-FAK were expressed in 10 of 10 and five of 10 PTC tumors, respectively. CONCLUSIONS: Inhibition of the Src-FAK complex represents a promising therapeutic strategy for patients with advanced thyroid cancer, and phospho-FAK represents a potential biomarker for response.


Asunto(s)
Benzodioxoles/uso terapéutico , Carcinoma Papilar/tratamiento farmacológico , Carcinoma/tratamiento farmacológico , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Proteínas Proto-Oncogénicas pp60(c-src)/antagonistas & inhibidores , Quinazolinas/uso terapéutico , Neoplasias de la Tiroides/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Benzodioxoles/farmacología , Carcinoma/metabolismo , Carcinoma Papilar/metabolismo , Técnicas de Cultivo de Célula , Proliferación Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Evaluación Preclínica de Medicamentos , Activación Enzimática/efectos de los fármacos , Proteína-Tirosina Quinasas de Adhesión Focal/antagonistas & inhibidores , Humanos , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Quinazolinas/farmacología , Neoplasias de la Tiroides/metabolismo , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...