Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 67(2): 1262-1313, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38180485

RESUMEN

The identification of VHL-binding proteolysis targeting chimeras (PROTACs) that potently degrade the BRM protein (also known as SMARCA2) in SW1573 cell-based experiments is described. These molecules exhibit between 10- and 100-fold degradation selectivity for BRM over the closely related paralog protein BRG1 (SMARCA4). They also selectively impair the proliferation of the H1944 "BRG1-mutant" NSCLC cell line, which lacks functional BRG1 protein and is thus highly dependent on BRM for growth, relative to the wild-type Calu6 line. In vivo experiments performed with a subset of compounds identified PROTACs that potently and selectively degraded BRM in the Calu6 and/or the HCC2302 BRG1 mutant NSCLC xenograft models and also afforded antitumor efficacy in the latter system. Subsequent PK/PD analysis established a need to achieve strong BRM degradation (>95%) in order to trigger meaningful antitumor activity in vivo. Intratumor quantitation of mRNA associated with two genes whose transcription was controlled by BRM (PLAU and KRT80) also supported this conclusion.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Quimera Dirigida a la Proteólisis , Xenoinjertos , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular , Neoplasias Pulmonares/genética , Factores de Transcripción/genética , ADN Helicasas/genética , Proteínas Nucleares/genética
2.
Mol Cell ; 82(9): 1643-1659.e10, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35334231

RESUMEN

The NADase SARM1 (sterile alpha and TIR motif containing 1) is a key executioner of axon degeneration and a therapeutic target for several neurodegenerative conditions. We show that a potent SARM1 inhibitor undergoes base exchange with the nicotinamide moiety of nicotinamide adenine dinucleotide (NAD+) to produce the bona fide inhibitor 1AD. We report structures of SARM1 in complex with 1AD, NAD+ mimetics and the allosteric activator nicotinamide mononucleotide (NMN). NMN binding triggers reorientation of the armadillo repeat (ARM) domains, which disrupts ARM:TIR interactions and leads to formation of a two-stranded TIR domain assembly. The active site spans two molecules in these assemblies, explaining the requirement of TIR domain self-association for NADase activity and axon degeneration. Our results reveal the mechanisms of SARM1 activation and substrate binding, providing rational avenues for the design of new therapeutics targeting SARM1.


Asunto(s)
Proteínas del Dominio Armadillo , NAD , Proteínas del Dominio Armadillo/genética , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , NAD/metabolismo , NAD+ Nucleosidasa/metabolismo , Dominios Proteicos
3.
Neuron ; 109(7): 1118-1136.e11, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33657413

RESUMEN

Axon degeneration is a central pathological feature of many neurodegenerative diseases. Sterile alpha and Toll/interleukin-1 receptor motif-containing 1 (SARM1) is a nicotinamide adenine dinucleotide (NAD+)-cleaving enzyme whose activation triggers axon destruction. Loss of the biosynthetic enzyme NMNAT2, which converts nicotinamide mononucleotide (NMN) to NAD+, activates SARM1 via an unknown mechanism. Using structural, biochemical, biophysical, and cellular assays, we demonstrate that SARM1 is activated by an increase in the ratio of NMN to NAD+ and show that both metabolites compete for binding to the auto-inhibitory N-terminal armadillo repeat (ARM) domain of SARM1. We report structures of the SARM1 ARM domain bound to NMN and of the homo-octameric SARM1 complex in the absence of ligands. We show that NMN influences the structure of SARM1 and demonstrate via mutagenesis that NMN binding is required for injury-induced SARM1 activation and axon destruction. Hence, SARM1 is a metabolic sensor responding to an increased NMN/NAD+ ratio by cleaving residual NAD+, thereby inducing feedforward metabolic catastrophe and axonal demise.


Asunto(s)
Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo , Axones/patología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , NAD/metabolismo , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Mononucleótido de Nicotinamida/metabolismo , Animales , Activación Enzimática , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Modelos Moleculares , Simulación de Dinámica Molecular , Mutagénesis , Nicotinamida-Nucleótido Adenililtransferasa/genética , Conformación Proteica
4.
J Virol ; 89(20): 10696-701, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26246567

RESUMEN

We demonstrate that novel bat HL17NL10 and HL18NL11 influenza virus NS1 proteins are effective interferon antagonists but do not block general host gene expression. Solving the RNA-binding domain structures revealed the canonical NS1 symmetrical homodimer, and RNA binding required conserved basic residues in this domain. Interferon antagonism was strictly dependent on RNA binding, and chimeric bat influenza viruses expressing NS1s defective in this activity were highly attenuated in interferon-competent cells but not in cells unable to establish antiviral immunity.


Asunto(s)
Quirópteros/virología , Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/veterinaria , ARN Bicatenario/química , Proteínas de Unión al ARN/química , Proteínas no Estructurales Virales/química , Animales , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno , Inmunidad Innata , Virus de la Influenza A/inmunología , Interferón beta/genética , Interferón beta/inmunología , Modelos Moleculares , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/inmunología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , ARN Bicatenario/inmunología , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/inmunología , Transducción de Señal , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología , Replicación Viral
5.
J Phys Chem B ; 118(37): 10882-8, 2014 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-25148246

RESUMEN

Pulsed electron-electron double resonance (PELDOR) is an electron paramagnetic resonance (EPR) spectroscopy technique for nanometer distance measurements between paramagnetic centers such as radicals. PELDOR has been recognized as a valuable tool to approach structural questions in biological systems. In this manuscript, we demonstrate the value of distance measurements for differentiating competing structural models on the dimerization of the effector domain (ED) of the non-structural protein 1 (NS1) of the influenza A virus. Our results show NS1 to be well amenable to nanometer distance measurements by EPR, yielding high quality data. In combination with mutants perturbing protein dimerization and in silico prediction based on crystal structures, we can exclude one of two potential dimerization interfaces. Furthermore, our results lead to a viable hypothesis of a NS1 ED:ED interface which is flexible through rotation around the vector interconnecting the two native cysteines. These results prove the high value of pulse EPR as a complementary method for structural biology.


Asunto(s)
Virus de la Influenza A/metabolismo , Proteínas no Estructurales Virales/química , Espectroscopía de Resonancia por Spin del Electrón , Multimerización de Proteína , Estructura Terciaria de Proteína , Soluciones/química , Marcadores de Spin , Proteínas no Estructurales Virales/metabolismo
6.
Org Biomol Chem ; 12(10): 1561-9, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24425043

RESUMEN

A stereodivergent plan is presented leading to all eight stereoisomers of oseltamivir carboxylate (OC). Key chemical manoeuvers are (1) a three-component vinylogous Mukaiyama-Mannich reaction, which sets the whole carbon skeleton and heteroatom substituents, and (2) an intramolecular, silylative Mukaiyama aldol reaction, which creates the targeted carbocycle. The viability of the plan was demonstrated by the first total synthesis of 4-epi-oseltamivir carboxylate (6), accessed in 15 steps from glyceraldehyde, o-anisidine and pyrrole siloxydiene precursors. Compound 6 inhibits influenza A virus strains H1N1 and H3N2 at the µM level, about 150 000-fold less than the OC reference, testifying that the stereodisposition of the C4 acetamido function is key for enzyme recognition. Guided by in-depth structural evaluation including NMR solution studies, molecular mechanics simulations, docking analyses and X-ray crystallography, rationalization of the biological verdict was established.


Asunto(s)
Antivirales/farmacología , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Oseltamivir/análogos & derivados , Antivirales/síntesis química , Antivirales/química , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Oseltamivir/síntesis química , Oseltamivir/química , Oseltamivir/farmacología , Relación Estructura-Actividad
7.
Angew Chem Int Ed Engl ; 53(4): 1076-80, 2014 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-24339250

RESUMEN

We have previously reported a potent neuraminidase inhibitor that comprises a carbocyclic analogue of zanamivir in which the hydrophilic glycerol side chain is replaced by the hydrophobic 3-pentyloxy group of oseltamivir. This hybrid inhibitor showed excellent inhibitory properties in the neuraminidase inhibition assay (Ki =0.46 nM; Ki (zanamivir) =0.16 nM) and in the viral replication inhibition assay in cell culture at 10(-8) M. As part of this lead optimization, we now report a novel spirolactam that shows comparable inhibitory activity in the cell culture assay to that of our lead compound at 10(-7) M. The compound was discovered serendipitously during the attempted synthesis of the isothiourea derivative of the original candidate. The X-ray crystal structure of the spirolactam in complex with the N8 subtype neuraminidase offers insight into the mode of inhibition.


Asunto(s)
Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Lactamas/farmacología , Neuraminidasa/antagonistas & inhibidores , Compuestos de Espiro/farmacología , Proteínas Virales/antagonistas & inhibidores , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Lactamas/síntesis química , Lactamas/química , Modelos Moleculares , Conformación Molecular , Neuraminidasa/metabolismo , Compuestos de Espiro/síntesis química , Compuestos de Espiro/química , Relación Estructura-Actividad , Proteínas Virales/metabolismo
8.
Sci Rep ; 3: 2871, 2013 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-24129600

RESUMEN

The influenza virus neuraminidase (NA) is essential for the virus life cycle. The rise of resistance mutations against current antiviral therapies has increased the need for the development of novel inhibitors. Recent efforts have targeted a cavity adjacent to the catalytic site (the 150-cavity) in addition to the primary catalytic subsite in order to increase specificity and reduce the likelihood of resistance. This study details structural and in vitro analyses of a class of inhibitors that bind uniquely in both subsites. Crystal structures of three inhibitors show occupation of the 150-cavity in two distinct and novel binding modes. We believe these are the first nanomolar inhibitors of NA to be characterized in this way. Furthermore, we show that one inhibitor, binding within the catalytic site, offers reduced susceptibility to known resistance mutations via increased flexibility of a pendant pentyloxy group and the ability to pivot about a strong hydrogen-bonding network.


Asunto(s)
Antivirales/química , Inhibidores Enzimáticos/química , Virus de la Influenza A/enzimología , Neuraminidasa/química , Proteínas Virales/química , Animales , Antivirales/metabolismo , Antivirales/farmacología , Dominio Catalítico , Línea Celular , Farmacorresistencia Viral , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/enzimología , Virus de la Influenza A/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/metabolismo , Oseltamivir/química , Oseltamivir/farmacología , Unión Proteica , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/metabolismo
9.
J Med Chem ; 55(20): 8963-8, 2012 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-23017008

RESUMEN

A series of C3 O-functionalized 2-acetamido-2-deoxy-Δ4-ß-D-glucuronides were synthesized to explore noncharge interactions in subsite 2 of the influenza virus sialidase active site. In complex with A/N8 sialidase, the parent compound (C3 OH) inverts its solution conformation to bind with all substituents well positioned in the active site. The parent compound inhibits influenza virus sialidase at a sub-µM level; the introduction of small alkyl substituents or an acetyl group at C3 is also tolerated.


Asunto(s)
Acetamidas/química , Antivirales/química , Glucurónidos/química , Neuraminidasa/química , Orthomyxoviridae/enzimología , Acetamidas/síntesis química , Dominio Catalítico , Pruebas de Enzimas , Fluorometría , Glucurónidos/síntesis química , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Neuraminidasa/antagonistas & inhibidores , Electricidad Estática , Relación Estructura-Actividad
10.
Org Biomol Chem ; 10(43): 8628-39, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-22976385

RESUMEN

Novel 3-C-alkylated-Neu5Ac2en derivatives have been designed to target the expanded active site cavity of influenza virus sialidases with an open 150-loop, currently seen in X-ray crystal structures of influenza A virus group-1 (N1, N4, N5, N8), but not group-2 (N2, N9), sialidases. The compounds show selectivity for inhibition of H5N1 and pdm09 H1N1 sialidases over an N2 sialidase, providing evidence of the relative 150-loop flexibility of these sialidases. In a complex with N8 sialidase, the C3 substituent of 3-phenylally-Neu5Ac2en occupies the 150-cavity while the central ring and the remaining substituents bind the active site as seen for the unsubstituted template. This new class of inhibitors, which can 'trap' the open 150-loop form of the sialidase, should prove useful as probes of 150-loop flexibility.


Asunto(s)
Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Virus de la Influenza A/enzimología , Ácido N-Acetilneuramínico/análogos & derivados , Neuraminidasa/antagonistas & inhibidores , Alquilación , Dominio Catalítico/efectos de los fármacos , Cristalografía por Rayos X , Diseño de Fármacos , Inhibidores Enzimáticos/química , Modelos Moleculares , Estructura Molecular , Ácido N-Acetilneuramínico/síntesis química , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/farmacología , Neuraminidasa/metabolismo , Docilidad/efectos de los fármacos , Relación Estructura-Actividad
11.
Artículo en Inglés | MEDLINE | ID: mdl-21821881

RESUMEN

The effector domain (ED) of the influenza virus virulence factor NS1 is capable of interaction with a variety of cellular and viral targets, although regulation of these events is poorly understood. Introduction of a W187A mutation into the ED abolishes dimer formation; however, strand-strand interactions between mutant NS1 ED monomers have been observed in two previous crystal forms. A new condition for crystallization of this protein [0.1 M Bis-Tris pH 6.0, 0.2 M NaCl, 22%(w/v) PEG 3350, 20 mM xylitol] was discovered using the hanging-drop vapour-diffusion method. Diffraction data extending to 1.8 Šresolution were collected from a crystal grown in the presence of 40 mM thieno[2,3-b]pyridin-2-ylmethanol. It was observed that there is conservation of the strand-strand interface in crystals of this monomeric NS1 ED in three different space groups. This observation, coupled with conformational changes in the interface region, suggests a potential role for ß-sheet augmentation in NS1 function.


Asunto(s)
Orthomyxoviridae/química , Proteínas no Estructurales Virales/química , Cristalografía por Rayos X , Modelos Moleculares , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
12.
PLoS One ; 6(3): e17946, 2011 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-21464929

RESUMEN

Influenza A virus NS1 protein is a multifunctional virulence factor consisting of an RNA binding domain (RBD), a short linker, an effector domain (ED), and a C-terminal 'tail'. Although poorly understood, NS1 multimerization may autoregulate its actions. While RBD dimerization seems functionally conserved, two possible apo ED dimers have been proposed (helix-helix and strand-strand). Here, we analyze all available RBD, ED, and full-length NS1 structures, including four novel crystal structures obtained using EDs from divergent human and avian viruses, as well as two forms of a monomeric ED mutant. The data reveal the helix-helix interface as the only strictly conserved ED homodimeric contact. Furthermore, a mutant NS1 unable to form the helix-helix dimer is compromised in its ability to bind dsRNA efficiently, implying that ED multimerization influences RBD activity. Our bioinformatical work also suggests that the helix-helix interface is variable and transient, thereby allowing two ED monomers to twist relative to one another and possibly separate. In this regard, we found a mAb that recognizes NS1 via a residue completely buried within the ED helix-helix interface, and which may help highlight potential different conformational populations of NS1 (putatively termed 'helix-closed' and 'helix-open') in virus-infected cells. 'Helix-closed' conformations appear to enhance dsRNA binding, and 'helix-open' conformations allow otherwise inaccessible interactions with host factors. Our data support a new model of NS1 regulation in which the RBD remains dimeric throughout infection, while the ED switches between several quaternary states in order to expand its functional space. Such a concept may be applicable to other small multifunctional proteins.


Asunto(s)
Virus de la Influenza A/metabolismo , Modelos Biológicos , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Animales , Línea Celular , Biología Computacional , Secuencia Conservada , Cristalografía por Rayos X , Perros , Humanos , Interferón beta/genética , Proteínas Mutantes/química , Mutación/genética , Docilidad , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , ARN Viral/metabolismo , Proteínas no Estructurales Virales/antagonistas & inhibidores
13.
Nat Commun ; 1: 113, 2010 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-21081911

RESUMEN

Influenza virus sialidase has an essential role in the virus' life cycle. Two distinct groups of influenza A virus sialidases have been established, that differ in the flexibility of the '150-loop', providing a more open active site in the apo form of the group-1 compared to group-2 enzymes. In this study we show, through a multidisciplinary approach, that novel sialic acid-based derivatives can exploit this structural difference and selectively inhibit the activity of group-1 sialidases. We also demonstrate that group-1 sialidases from drug-resistant mutant influenza viruses are sensitive to these designed compounds. Moreover, we have determined, by protein X-ray crystallography, that these inhibitors lock open the group-1 sialidase flexible 150-loop, in agreement with our molecular modelling prediction. This is the first direct proof that compounds may be developed to selectively target the pandemic A/H1N1, avian A/H5N1 and other group-1 sialidase-containing viruses, based on an open 150-loop conformation of the enzyme.

14.
Proc Natl Acad Sci U S A ; 107(5): 1954-9, 2010 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-20133840

RESUMEN

Seasonal epidemics and periodic worldwide pandemics caused by influenza A viruses are of continuous concern. The viral nonstructural (NS1) protein is a multifunctional virulence factor that antagonizes several host innate immune defenses during infection. NS1 also directly stimulates class IA phosphoinositide 3-kinase (PI3K) signaling, an essential cell survival pathway commonly mutated in human cancers. Here, we present a 2.3-A resolution crystal structure of the NS1 effector domain in complex with the inter-SH2 (coiled-coil) domain of p85beta, a regulatory subunit of PI3K. Our data emphasize the remarkable isoform specificity of this interaction, and provide insights into the mechanism by which NS1 activates the PI3K (p85beta:p110) holoenzyme. A model of the NS1:PI3K heterotrimeric complex reveals that NS1 uses the coiled-coil as a structural tether to sterically prevent normal inhibitory contacts between the N-terminal SH2 domain of p85beta and the p110 catalytic subunit. Furthermore, in this model, NS1 makes extensive contacts with the C2/kinase domains of p110, and a small acidic alpha-helix of NS1 sits adjacent to the highly basic activation loop of the enzyme. During infection, a recombinant influenza A virus expressing NS1 with charge-disruption mutations in this acidic alpha-helix is unable to stimulate the production of phosphatidylinositol 3,4,5-trisphosphate or the phosphorylation of Akt. Despite this, the charge-disruption mutations in NS1 do not affect its ability to interact with the p85beta inter-SH2 domain in vitro. Overall, these data suggest that both direct binding of NS1 to p85beta (resulting in repositioning of the N-terminal SH2 domain) and possible NS1:p110 contacts contribute to PI3K activation.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/metabolismo , Fosfatidilinositol 3-Quinasas/química , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Animales , Secuencia de Bases , Dominio Catalítico , Bovinos , Línea Celular , Cristalografía por Rayos X , Cartilla de ADN/genética , Perros , Activación Enzimática , Humanos , Técnicas In Vitro , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Modelos Moleculares , Complejos Multiproteicos , Mutagénesis Sitio-Dirigida , Dominios y Motivos de Interacción de Proteínas , Proteínas no Estructurales Virales/genética , Dominios Homologos src
15.
Proc Natl Acad Sci U S A ; 105(46): 17736-41, 2008 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-19004788

RESUMEN

The influenza surface glycoprotein hemagglutinin (HA) is a potential target for antiviral drugs because of its key roles in the initial stages of infection: receptor binding and the fusion of virus and cell membranes. The structure of HA in complex with a known inhibitor of membrane fusion and virus infectivity, tert-butyl hydroquinone (TBHQ), shows that the inhibitor binds in a hydrophobic pocket formed at an interface between HA monomers. Occupation of this site by TBHQ stabilizes the neutral pH structure through intersubunit and intrasubunit interactions that presumably inhibit the conformational rearrangements required for membrane fusion. The nature of the binding site suggests routes for the chemical modification of TBHQ that could lead to the development of more potent inhibitors of membrane fusion and potential anti-influenza drugs.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Hidroquinonas/química , Hidroquinonas/farmacología , Fusión de Membrana/efectos de los fármacos , Sitios de Unión , Fluorometría , Concentración de Iones de Hidrógeno/efectos de los fármacos , Filogenia , Multimerización de Proteína/efectos de los fármacos , Estructura Secundaria de Proteína , Subunidades de Proteína/química , Especificidad por Sustrato/efectos de los fármacos
16.
Virology ; 373(1): 202-10, 2008 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-18191435

RESUMEN

Synthesis of influenza virus mRNA by the viral RNA polymerase complex is primed by capped RNA fragments generated by endonuclease cleavage of host pre-mRNA by the polymerase subunit PB1. In previous studies, endonuclease and promoter-binding sites have been described in the C-terminal region of PB1. Here, we have identified an additional region near the C-terminus of PB1 involved in producing capped RNA primers for viral transcription. In particular, mutations of basic amino acids K669, R670, and R672 inhibited primer-dependent viral mRNA synthesis. In contrast, primer-independent cRNA and vRNA syntheses were only marginally affected. Additionally, recombinant viruses containing the K669A or R672A mutations expressed reduced amounts of mRNA compared to cRNA during infection and were attenuated in cell culture. Further in vitro analysis showed that these mutations inhibited the ability of the polymerase to initiate mRNA synthesis by causing a reduction in binding to the vRNA promoter and capped RNA. These results suggest that this region plays a critical role in the regulation of viral mRNA transcription.


Asunto(s)
Regulación Viral de la Expresión Génica , Virus de la Influenza A/metabolismo , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/química , Transcripción Genética , Proteínas Virales/química , Animales , Línea Celular , Humanos , Virus de la Influenza A/genética , Oligorribonucleótidos/metabolismo , Mutación Puntual , Caperuzas de ARN/metabolismo , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA