Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cryobiology ; 113: 104587, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37783264

RESUMEN

To develop cryopreservation methods for cell-based medicinal products it is important to understand osmotic responses of cells upon immersion into solutions with cryoprotective agents (CPAs) and during freezing. The aim of this study was to assess the osmotic response of T cells by using flow imaging microscopy (FIM) as a novel cell-sizing technique, and to corroborate the findings with electrical impedance measurements conducted on a Coulter counter. Jurkat cells were used as a potential model cell line for primary T cells. Cell volume responses were used to derive important cell parameters for cryopreservation such as the osmotically inactive cell volume Vb and the membrane permeability towards water and various CPAs. Unlike Coulter counter measurement, FIM, combined with Trypan blue staining can differentiate between viable and dead cells, which yields a more accurate estimation of Vb. Membrane permeabilities to water, dimethyl sulfoxide (Me2SO) and glycerol were measured for Jurkat cells at different temperatures. The permeation of Me2SO into the cells was faster in comparison to glycerol. CPA permeation decreased with decreasing temperature following Arrhenius behavior. Moreover, membrane permeability to water decreased in the presence of CPAs. Vb of Jurkat cells was found to be 49% of the isotonic volume and comparable to that of primary T cells. FIM proved to be a valuable tool to determine the membrane permeability parameters of mammalian cells to water and cryoprotective agents, which in turn can be used to rationally design CPA loading procedures for cryopreservation.


Asunto(s)
Crioprotectores , Glicerol , Humanos , Animales , Crioprotectores/farmacología , Crioprotectores/metabolismo , Glicerol/metabolismo , Criopreservación/métodos , Microscopía , Linfocitos T , Dimetilsulfóxido/farmacología , Dimetilsulfóxido/metabolismo , Permeabilidad de la Membrana Celular/fisiología , Agua/metabolismo , Mamíferos/metabolismo
2.
Vaccines (Basel) ; 10(7)2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35891242

RESUMEN

Vaccines undergo stringent batch-release testing, most often including in-vivo assays for potency. For combination vaccines, such as diphtheria-tetanus-pertussis (DTaP), chemical modification induced by formaldehyde inactivation, as well as adsorption to aluminum-based adjuvants, complicates antigen-specific in-vitro analysis. Here, a mass spectrometric method was developed that allows the identification and quantitation of DTaP antigens in a combination vaccine. Isotopically labeled, antigen-specific internal standard peptides were employed that permitted absolute quantitation of their antigen-derived peptide counterparts and, consequently, the individual antigens. We evaluated the applicability of the method on monovalent non-adjuvanted antigens, on final vaccine lots and on experimental vaccine batches, where certain antigens were omitted from the drug product. Apart from the applicability for final batch release, we demonstrated the suitability of the approach for in-process control monitoring. The peptide quantification method facilitates antigen-specific identification and quantification of combination vaccines in a single assay. This may contribute, as part of the consistency approach, to a reduction in the number of animal tests required for vaccine-batch release.

3.
J Pharm Sci ; 111(4): 1058-1069, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35114211

RESUMEN

The aim of this study was to demonstrate the strength of combining immunochemical and biophysical analysis tools for assessing the quality of Sabin inactivated poliovirus vaccine (Sabin-IPV) bulk products. We assessed Sabin-IPV serotypes 1, 2 and 3 from six different manufacturers and evaluated their comparability through biosensor analysis and biophysical characterization methods, including tryptophan fluorescence and asymmetrical flow field-flow fractionation - multi-angle light scattering analysis. These methods enabled us to assess antigenic as well as conformational and structural integrity profiles, respectively. Based on Sabin-IPV samples that were subjected to accelerated storage conditions, we revealed that existing immunochemical methods exhibit remarkably similar trends to the results obtained by the biophysical characterization methods. While the results underpin that the comparability of Sabin-IPV bulk products of different manufacturers is weak, information about their quality can rapidly be obtained by using both immunochemical and biophysical methods. Furthermore, the study highlights that quality assessment of Sabin-IPV can be obtained through biophysical techniques can complement the assessments performed with monoclonal antibodies and suggests that similar techniques could be employed to characterize other enteroviruses.


Asunto(s)
Poliomielitis , Poliovirus , Anticuerpos Antivirales , Antígenos Virales , Humanos , Poliomielitis/prevención & control , Vacuna Antipolio de Virus Inactivados , Vacuna Antipolio Oral
4.
J Pharm Sci ; 111(4): 982-990, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35090866

RESUMEN

Aluminum hydroxide (Al(OH)3) and aluminum phosphate (AlPO4) are widely used adjuvants in human vaccines. However, a rationale to choose one or the other is lacking since the differences between molecular mechanisms of action of these adjuvants are unknown. In the current study, we compared the innate immune response induced by both adjuvants in vitro and in vivo. Proteome analysis of human primary monocytes was used to determine the immunological pathways activated by these adjuvants. Subsequently, analysis of immune cells present at the site of injection and proteome analysis of the muscle tissue revealed the differentially regulated processes related to the innate immune response in vivo. Incubation with Al(OH)3 specifically enhanced the activation of antigen processing and presentation pathways in vitro. In vivo experiments showed that only intramuscular (I.M.) immunization with Al(OH)3 attracted neutrophils, while I.M. immunization with AlPO4 attracted monocytes/macrophages to the site of injection. In addition, only I.M. immunization with Al(OH)3 enhanced the process of hemostasis after 96 hours, possibly related to neutrophilic extracellular trap formation. Both adjuvants differentially regulated various immune system-related processes. The results show that Al(OH)3 and AlPO4 act differently on the innate immune system. We speculate that these different regulations affect the interaction with cells, due to the different physicochemical properties of both adjuvants.


Asunto(s)
Hidróxido de Aluminio , Proteoma , Adyuvantes Inmunológicos/farmacología , Adyuvantes Farmacéuticos , Aluminio , Compuestos de Aluminio , Hidróxido de Aluminio/farmacología , Humanos , Inmunidad Innata , Fosfatos
5.
J Pharm Sci ; 111(4): 933-950, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34919969

RESUMEN

Particles in biopharmaceutical formulations remain a hot topic in drug product development. With new product classes emerging it is crucial to discriminate particulate active pharmaceutical ingredients from particulate impurities. Technical improvements, new analytical developments and emerging tools (e.g., machine learning tools) increase the amount of information generated for particles. For a proper interpretation and judgment of the generated data a thorough understanding of the measurement principle, suitable application fields and potential limitations and pitfalls is required. Our review provides a comprehensive overview of novel particle analysis techniques emerging in the last decade for particulate impurities in therapeutic protein formulations (protein-related, excipient-related and primary packaging material-related), as well as particulate biopharmaceutical formulations (virus particles, virus-like particles, lipid nanoparticles and cell-based medicinal products). In addition, we review the literature on applications, describe specific analytical approaches and illustrate advantages and drawbacks of currently available techniques for particulate biopharmaceutical formulations.


Asunto(s)
Productos Biológicos , Vacunas , Virus , Composición de Medicamentos , Liposomas , Nanopartículas , Tamaño de la Partícula
6.
J Am Soc Mass Spectrom ; 32(6): 1490-1497, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-33983728

RESUMEN

Currently, animal tests are being used to confirm the potency and lack of toxicity of toxoid vaccines. In a consistency approach, animal tests could be replaced if production consistency (compared to known good products) can be proven in a panel of in vitro assays. By mimicking the in vivo antigen processing in a simplified in vitro approach, it may be possible to distinguish aberrant products from good products. To demonstrate this, heat-exposed diphtheria toxoid was subjected to partial digestion by cathepsin S (an endoprotease involved in antigen processing), and the peptide formation/degradation kinetics were mapped for various heated toxoids. To overcome the limitations associated with the very large number of samples, we used common reference-based tandem mass tag (TMT) labeling. Instead of using one label per condition with direct comparison between the set of labels, we compared multiple labeled samples to a common reference (a pooled sample containing an aliquot of each condition). In this method, the number of samples is not limited by the number of unique TMT labels. This TMT multiplexing strategy allows for a 15-fold reduction of analysis time while retaining the reliability advantage of TMT labeling over label-free quantification. The formation of the most important peptides could be followed over time and compared among several conditions. The changes in enzymatic degradation kinetics of diphtheria toxoid revealed several suitable candidate peptides for use in a quality control assay that can distinguish structurally aberrant diphtheria toxoid from compliant toxoids.


Asunto(s)
Toxoide Diftérico/metabolismo , Péptidos/análisis , Espectrometría de Masas en Tándem/métodos , Toxoide Diftérico/análisis , Espectrometría de Masas en Tándem/normas , Temperatura
7.
Int J Pharm ; 601: 120586, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33839230

RESUMEN

A drawback of the current mRNA-lipid nanoparticle (LNP) COVID-19 vaccines is that they have to be stored at (ultra)low temperatures. Understanding the root cause of the instability of these vaccines may help to rationally improve mRNA-LNP product stability and thereby ease the temperature conditions for storage. In this review we discuss proposed structures of mRNA-LNPs, factors that impact mRNA-LNP stability and strategies to optimize mRNA-LNP product stability. Analysis of mRNA-LNP structures reveals that mRNA, the ionizable cationic lipid and water are present in the LNP core. The neutral helper lipids are mainly positioned in the outer, encapsulating, wall. mRNA hydrolysis is the determining factor for mRNA-LNP instability. It is currently unclear how water in the LNP core interacts with the mRNA and to what extent the degradation prone sites of mRNA are protected through a coat of ionizable cationic lipids. To improve the stability of mRNA-LNP vaccines, optimization of the mRNA nucleotide composition should be prioritized. Secondly, a better understanding of the milieu the mRNA is exposed to in the core of LNPs may help to rationalize adjustments to the LNP structure to preserve mRNA integrity. Moreover, drying techniques, such as lyophilization, are promising options still to be explored.


Asunto(s)
COVID-19 , Nanopartículas , Vacunas contra la COVID-19 , Humanos , Lípidos , ARN Mensajero , ARN Interferente Pequeño , SARS-CoV-2
8.
Vaccines (Basel) ; 8(4)2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33271767

RESUMEN

Currently, batch release of toxoid vaccines, such as diphtheria and tetanus toxoid, requires animal tests to confirm safety and immunogenicity. Efforts are being made to replace these tests with in vitro assays in a consistency approach. Limitations of current in vitro assays include the need for reference antigens and most are only applicable to drug substance, not to the aluminum adjuvant-containing and often multivalent drug product. To overcome these issues, a new assay was developed based on mimicking the proteolytic degradation processes in antigen-presenting cells with recombinant cathepsin S, followed by absolute quantification of the formed peptides by liquid chromatography-mass spectrometry. Temperature-exposed tetanus toxoids from several manufacturers were used as aberrant samples and could easily be distinguished from the untreated controls by using the newly developed degradomics assay. Consistency of various batches of a single manufacturer could also be determined. Moreover, the assay was shown to be applicable to Al(OH)3 and AlPO4-adsorbed tetanus toxoids. Overall, the assay shows potential for use in both stability studies and as an alternative for in vivo potency studies by showing batch-to-batch consistency of bulk toxoids as well as for aluminum-containing vaccines.

9.
Mol Pharm ; 17(11): 4375-4385, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33017153

RESUMEN

Formaldehyde-inactivated toxoid vaccines have been in use for almost a century. Despite formaldehyde's deceptively simple structure, its reactions with proteins are complex. Treatment of immunogenic proteins with aqueous formaldehyde results in heterogenous mixtures due to a variety of adducts and cross-links. In this study, we aimed to further elucidate the reaction products of formaldehyde reaction with proteins and report unique modifications in formaldehyde-treated cytochrome c and corresponding synthetic peptides. Synthetic peptides (Ac-GDVEKGAK and Ac-GDVEKGKK) were treated with isotopically labeled formaldehyde (13CH2O or CD2O) followed by purification of the two main reaction products. This allowed for their structural elucidation by (2D)-nuclear magnetic resonance and nanoscale liquid chromatography-coupled mass spectrometry analysis. We observed modifications resulting from (i) formaldehyde-induced deamination and formation of α,ß-unsaturated aldehydes and methylation on two adjacent lysine residues and (ii) formaldehyde-induced methylation and formylation of two adjacent lysine residues. These products react further to form intramolecular cross-links between the two lysine residues. At higher peptide concentrations, these two main reaction products were also found to subsequently cross-link to lysine residues in other peptides, forming dimers and trimers. The accurate identification and quantification of formaldehyde-induced modifications improves our knowledge of formaldehyde-inactivated vaccine products, potentially aiding the development and registration of new vaccines.


Asunto(s)
Citocromos c/química , Formaldehído/farmacología , Lisina/química , Péptidos/química , Aldehídos/química , Cromatografía Líquida de Alta Presión/métodos , Reactivos de Enlaces Cruzados/química , Desaminación/efectos de los fármacos , Cinética , Espectroscopía de Resonancia Magnética/métodos , Espectrometría de Masas/métodos , Metilación/efectos de los fármacos , Estructura Molecular , Vacunas de Productos Inactivados/química
10.
Sci Rep ; 10(1): 11535, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32665578

RESUMEN

Enzymatic degradation of protein antigens by endo-lysosomal proteases in antigen-presenting cells is crucial for achieving cellular immunity. Structural changes caused by vaccine production process steps, such as formaldehyde inactivation, could affect the sensitivity of the antigen to lysosomal proteases. The aim of this study was to assess the effect of the formaldehyde detoxification process on the enzymatic proteolysis of antigens by studying model proteins. Bovine serum albumin, ß-lactoglobulin A and cytochrome c were treated with various concentrations of isotopically labelled formaldehyde and glycine, and subjected to proteolytic digestion by cathepsin S, an important endo-lysosomal endoprotease. Degradation products were analysed by mass spectrometry and size exclusion chromatography. The most abundant modification sites were identified by their characteristic MS doublets. Unexpectedly, all studied proteins showed faster proteolytic degradation upon treatment with higher formaldehyde concentrations. This effect was observed both in the absence and presence of glycine, an often-used excipient during inactivation to prevent intermolecular crosslinking. Overall, subjecting proteins to formaldehyde or formaldehyde/glycine treatment results in changes in proteolysis rates, leading to an enhanced degradation speed. This accelerated degradation could have consequences for the immunogenicity and the efficacy of vaccine products containing formaldehyde-inactivated antigens.


Asunto(s)
Catepsinas/metabolismo , Endosomas/efectos de los fármacos , Formaldehído , Lisosomas/efectos de los fármacos , Animales , Antígenos/química , Bovinos , Cromatografía Liquida , Citocromos c/química , Endosomas/metabolismo , Escherichia coli/metabolismo , Glicina/química , Humanos , Cinética , Lactoglobulinas/química , Lisosomas/metabolismo , Espectrometría de Masas , Péptidos/química , Proteolisis , Albúmina Sérica Bovina/química , Solventes
11.
Sci Rep ; 10(1): 7396, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32355188

RESUMEN

A vaccine based on outer membrane vesicles of pertussis (omvPV) is protective in a mouse-challenge model and induces a broad antibody and mixed Th1/Th2/Th17 response against multiple antigens following subcutaneous immunization. However, this route did not result in mucosal immunity and did not prevent nasopharyngeal colonization. In this study, we explored the potential of intranasal immunization with omvPV. Only intranasal immunization induced strong mucosal immune responses that encompasses enhanced pulmonary and nasal IgA antibody levels, mainly directed against Vag8 and LPS. Furthermore, high numbers of IgA- and IgG-producing plasma cells were detected as well as lung-resident IgA memory B-cells. Finally, only intranasal immunization induced pulmonary Th1/Th17-related cytokine responses. The magnitude and type of systemic immunity was comparable between both routes and included high systemic IgG antibody levels, strong IgG-producing plasma cell responses, memory B-cells residing in the spleen and systemic Th1/Th2/Th17-related cytokine responses. Importantly, only intranasal immunization prevented colonization in both the lungs and the nasal cavity. In conclusion, intranasal omvPV immunization induces mucosal IgA and Th17-mediated responses without influencing the systemic immunity profile. These responses resulted in prevention of Bordetella pertussis colonization in the respiratory tract, including the nasal cavity, thereby potentially preventing transmission.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Bordetella pertussis/inmunología , Micropartículas Derivadas de Células/inmunología , Inmunidad Mucosa , Inmunoglobulina A/inmunología , Vacuna contra la Tos Ferina/inmunología , Células Th17/inmunología , Tos Ferina/prevención & control , Administración Intranasal , Animales , Linfocitos B/inmunología , Linfocitos B/patología , Femenino , Memoria Inmunológica , Ratones , Ratones Endogámicos BALB C , Células TH1/inmunología , Células TH1/patología , Células Th17/patología , Tos Ferina/inmunología , Tos Ferina/patología
12.
Eur J Pharm Sci ; 146: 105269, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32084587

RESUMEN

Biomaterials used as matrix for dissolving micro needles (dMNs) may affect the manufacturing process as well as the potency of the active pharmaceutical ingredient, e.g. the immunogenicity of incorporated vaccine antigens. The aim of this study was to investigate the effect of the molecular weight of hyaluronan, a polymer widely used in the fabrication of dMNs, ranging in molecular weight from 4.8 kDa to 1.8 MDa, on the dissolution of microneedles in the skin in time as well as the antibody response in mice and T-cell activation in vitro. Hyaluronan molecular weight (HA-MWs) did not affect antibody responses (when lower than 150 kDa) nor CD4+ T-cell responses against model antigen ovalbumin. However, the HA-MWs had an effect on the fabrication of dMNs. The 1.8 MDa HA was not suitable for the fabrication of dMNs. Similarly, the 4.8 kDa HA generated dMN arrays less robust compared to the other HA-MWs requiring optimization of the drying conditions. Finally, higher HA-MWs led to longer application time of dMN arrays for a complete dissolution of microneedles into the skin. Specifically, we identified 20 kDa HA as the optimal HA-MW for the fabrication of dMNs as with this MW the dMNs are robust and dissolve fast in the skin without affecting immunogenicity.


Asunto(s)
Antígenos/inmunología , Ácido Hialurónico/química , Microinyecciones , Agujas , Vacunas/administración & dosificación , Animales , Femenino , Humanos , Ácido Hialurónico/inmunología , Técnicas In Vitro , Ratones , Ratones Endogámicos BALB C , Peso Molecular , Ovalbúmina/inmunología , Solubilidad , Vacunas/inmunología
13.
J Pharm Sci ; 109(1): 543-557, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31678246

RESUMEN

Diphtheria toxoid is produced by detoxification of diphtheria toxin with formaldehyde. This study was performed to elucidate the chemical nature and location of formaldehyde-induced modifications in diphtheria toxoid. Diphtheria toxin was chemically modified using 4 different reactions with the following reagents: (1) formaldehyde and NaCNBH3, (2) formaldehyde, (3) formaldehyde and NaCNBH3 followed by formaldehyde and glycine, and (4) formaldehyde and glycine. The modifications were studied by SDS-PAGE, primary amino group determination, and liquid chromatography-electrospray mass spectrometry of chymotryptic digests. Reaction 1 resulted in quantitative dimethylation of all lysine residues. Reaction 2 caused intramolecular cross-links, including the NAD+-binding cavity and the receptor-binding site. Moreover, A fragments and B fragments were cross-linked by formaldehyde on part of the diphtheria toxoid molecules. Reaction 3 resulted in formaldehyde-glycine attachments, including in shielded areas of the protein. The detoxification reaction typically used for vaccine preparation (reaction 4) resulted in a combination of intramolecular cross-links and formaldehyde-glycine attachments. Both the NAD+-binding cavity and the receptor-binding site of diphtheria toxin were chemically modified. Although CD4+ T-cell epitopes were affected to some extent, one universal CD4+ T-cell epitope remained almost completely unaltered by the treatment with formaldehyde and glycine.


Asunto(s)
Toxina Diftérica/química , Toxoide Diftérico/química , Epítopos de Linfocito T/química , Formaldehído/química , Borohidruros/química , Cromatografía de Fase Inversa , Toxina Diftérica/inmunología , Toxoide Diftérico/inmunología , Composición de Medicamentos , Electroforesis en Gel de Poliacrilamida , Epítopos de Linfocito T/inmunología , Glicina/química , Modelos Moleculares , Conformación Proteica , Espectrometría de Masa por Ionización de Electrospray , Relación Estructura-Actividad
14.
J Pharm Sci ; 109(1): 750-760, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31449816

RESUMEN

Subunit vaccines often contain colloidal aluminum salt-based adjuvants to activate the innate immune system. These aluminum salts consist of micrometer-sized aggregates. It is well-known that particle size affects the adjuvant effect of particulate adjuvants. In this study, the activation of human monocytes by hexagonal-shaped gibbsite (ø = 210 ± 40 nm) and rod-shaped boehmite (ø = 83 ± 827 nm) was compared with classical aluminum oxyhydroxide adjuvant (alum). To this end, human primary monocytes were cultured in the presence of alum, gibbsite, or boehmite. The transcriptome and proteome of the monocytes were investigated by using quantitative polymerase chain reaction and mass spectrometry. Human monocytic THP-1 cells were used to investigate the effect of the particles on cellular maturation, differentiation, activation, and cytokine secretion, as measured by flow cytometry and enzyme-linked immunosorbent assay. Each particle type resulted in a specific gene expression profile. IL-1ß and IL-6 secretion was significantly upregulated by boehmite and alum. Of the 7 surface markers investigated, only CD80 was significantly upregulated by alum and none by gibbsite or boehmite. Gibbsite hardly activated the monocytes. Boehmite activated human primary monocytes equally to alum, but induced a much milder stress-related response. Therefore, boehmite was identified as a promising adjuvant candidate.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Hidróxido de Aluminio/farmacología , Óxido de Aluminio/farmacología , Inmunidad Innata/efectos de los fármacos , Monocitos/efectos de los fármacos , Adyuvantes Inmunológicos/química , Hidróxido de Aluminio/química , Óxido de Aluminio/química , Antígeno B7-1/genética , Antígeno B7-1/metabolismo , Diferenciación Celular/efectos de los fármacos , Coloides , Composición de Medicamentos , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Tamaño de la Partícula , Células THP-1 , Transcriptoma
15.
Front Immunol ; 10: 1364, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31275314

RESUMEN

Bordetella (B.) pertussis resurgence affects not only the unvaccinated, but also the vaccinated population. Different vaccines are available, however, it is currently unknown whether the type of childhood vaccination has an influence on antibody responses following a B. pertussis infection later in life. Therefore, the study aim was to profile serum antibody responses in young adults with suspected B. pertussis infections, immunized during childhood with either whole-cell (wPV) or monocomponent acellular pertussis (aPV) vaccines. Serum anti-pertussis toxin (PTx) IgG antibody levels served as an indicator for a recent B. pertussis infection. Leftover sera from a diagnostic laboratory from 36 Danish individuals were included and divided into four groups based on immunization background (aPV vs. wPV) and serum anti-PTx IgG levels (- vs. +). Pertussis-specific IgG/IgA antibody levels and antigen specificity were determined by using multiplex immunoassays (MIA), one- and two-dimensional immunoblotting (1 & 2DEWB), and mass spectrometry. Besides enhanced anti-PTx levels, wPV(+) and aPV(+) groups showed increased IgG and IgA levels against pertactin, filamentous hemagglutinin, fimbriae 2/3, and pertussis outer membrane vesicles (OMV). In the wPV(-) and aPV(-) groups, only low levels of anti-OMV antibodies were detected. 1DEWB demonstrated that antibody patterns differed between groups but also between individuals with the same immunization background and anti-PTx levels. 2DWB analysis for serum IgG revealed 133 immunogenic antigens of which 40 were significantly different between groups allowing to differentiate wPV(+) and aPV(+) groups. Similarly, for serum IgA, 7 of 47 immunogenic protein spots were significantly different. This study demonstrated that B. pertussis infection-induced antibody responses were distinct on antigen level between individuals with either wPV or aPV immunization background. Importantly, only 2DEWB and not MIA could detect these differences indicating the potential of this method. Moreover, in individuals immunized with an aPV containing only PTx in childhood, the infection-induced antibody responses were not limited to PTx alone.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Especificidad de Anticuerpos/inmunología , Bordetella pertussis/inmunología , Vacuna contra la Tos Ferina/inmunología , Tos Ferina/inmunología , Adolescente , Antígenos Bacterianos/inmunología , Electroforesis en Gel Bidimensional , Femenino , Humanos , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Masculino , Toxina del Pertussis/inmunología , Vacunación , Vacunas Acelulares/inmunología , Tos Ferina/prevención & control , Adulto Joven
16.
Colloids Surf B Biointerfaces ; 181: 648-656, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31212137

RESUMEN

Aluminium phosphate is a commonly used adjuvant consisting of heterogeneously sized aggregates up to several micrometers. However, aluminium phosphate nanoparticles may exhibit an improved adjuvant effect. In this study, nanoparticles were made by sonication of commercially available aluminium phosphate adjuvant, resulting in particles with a size (Z-average diameter) between 200-300 nm and a point of zero charge of 4.5. To prevent reaggregation, which occurred within 14 days, a screening of excipients was performed to identify stabilisers effective under physiological conditions (pH 7.4, 290 mOsm). The amino acids threonine, asparagine, and L-alanyl-L-1-aminoethylphosphonic acid (LAPA) stabilised sonicated aluminium phosphate. Particle sizes remained stable between 400-600 nm at 37 °C during 106 days. Contrarily, arginine induced strong reaggregation to a particle size larger than 1000 nm. The stability of aluminium phosphate nanoparticles was strongly affected by the pH. Aggregation mainly occurred below pH 7. The adsorption capacity, a potentially relevant parameter for adjuvants, was slightly reduced in the presence of asparagine, when using a model antigen (lysozyme). LAPA, arginine, threonine and aspartic acid reduced protein adsorption significantly. The adjuvant effect of aluminium phosphate nanoparticles was studied by immunisation of mice with diphtheria toxoid adjuvanted with the aluminium phosphate nanoparticles. The presence of LAPA, threonine, aspartic acid or asparagine did not alter diphtheria toxoid-specific antibody or toxin-neutralising antibody titres. Arginine increased diphtheria toxoid-specific antibody titres but not toxin-neutralising antibody titres. In conclusion, aluminium phosphate nanoparticles were stabilised by particular amino acids and induced an adjuvant effect comparable to that of aluminium phosphate microparticles.


Asunto(s)
Adyuvantes Inmunológicos , Compuestos de Aluminio/química , Toxoide Diftérico/química , Nanopartículas/química , Fosfatos/química , Compuestos de Aluminio/inmunología , Animales , Toxoide Diftérico/inmunología , Ratones , Tamaño de la Partícula , Fosfatos/inmunología , Propiedades de Superficie
17.
Eur J Pharm Biopharm ; 134: 49-59, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30453025

RESUMEN

The purpose of this study was to optimize the manufacturing of dissolving microneedles (dMNs) and to increase the antigen loading in dMNs to investigate the effect on their physicochemical properties. To achieve this, a novel single-array wells polydimethylsiloxane mold was designed, minimizing antigen wastage during fabrication and achieving homogeneous antigen distribution among the dMN arrays. Using this mold, hyaluronan (HA)-based dMNs were fabricated and tested for maximal ovalbumin (OVA) content. dMNs could be fabricated with an OVA:HA ratio as high as 1:1 (w/w), without compromising their properties such as shape and penetration into the ex vivo human skin, even after storage at high humidity and temperature. High antigen loading did not induce protein aggregation during dMN fabrication as demonstrated by complementary analytical methods. However, the dissolution rate in ex vivo human skin decreased with increasing antigen loading. About 2.7 µg OVA could be delivered in mice by using a single array with an OVA:HA ratio of 1:3 (w/w). Intradermal vaccination with dMNs induced an immune response similar as subcutaneous injection and faster than after hollow microneedle injection. In conclusion, results suggest that (i) the polydimethylsiloxane mold design has an impact on the manufacturing of dMNs, (ii) the increase in antigen loading in dMNs affects the microneedle dissolution and (iii) dMNs are a valid alternative for vaccine administration over conventional injection.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Composición de Medicamentos/métodos , Sistemas de Liberación de Medicamentos/instrumentación , Vacunación/instrumentación , Vacunas/administración & dosificación , Adyuvantes Inmunológicos/farmacocinética , Animales , Antígenos/administración & dosificación , Antígenos/inmunología , Dimetilpolisiloxanos/química , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Femenino , Humanos , Ácido Hialurónico/administración & dosificación , Ácido Hialurónico/inmunología , Ácido Hialurónico/farmacocinética , Inmunogenicidad Vacunal/inmunología , Inyecciones Intradérmicas/instrumentación , Ratones , Ratones Endogámicos BALB C , Microinyecciones/instrumentación , Modelos Animales , Agujas , Ovalbúmina/administración & dosificación , Ovalbúmina/inmunología , Ovalbúmina/farmacocinética , Vacunación/métodos , Vacunas/inmunología
18.
Immunology ; 156(1): 33-46, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30317555

RESUMEN

Systems vaccinology has proven a fascinating development in the last decade. Where traditionally vaccine development has been dominated by trial and error, systems vaccinology is a tool that provides novel and comprehensive understanding if properly used. Data sets retrieved from systems-based studies endorse rational design and effective development of safe and efficacious vaccines. In this review we first describe different omics-techniques that form the pillars of systems vaccinology. In the second part, the application of systems vaccinology in the different stages of vaccine development is described. Overall, this review shows that systems vaccinology has become an important tool anywhere in the vaccine development chain.


Asunto(s)
Biología de Sistemas , Vacunas/inmunología , Vacunología/tendencias , Animales , Conjuntos de Datos como Asunto , Diseño de Fármacos , Humanos , Proteómica , Transcriptoma , Vacunación
19.
Pharmaceutics ; 10(4)2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30388786

RESUMEN

Microneedle technologies have been developed for dermal drug and vaccine delivery, including hollow-, solid-, coated-, and dissolving microneedles. Microneedles have been made in many different geometries and of many different materials, all of which may influence their skin-penetrating ability. To ensure reproducible and effective drug and vaccine delivery via microneedles, the optimal insertion parameters should be known. Therefore, a digitally-controlled microneedle applicator was developed to insert microneedles into the skin via impact insertion (velocity) or via pressing force insertion. Six microneedle arrays with different geometries and/or materials were applied onto ex vivo human skin with varying velocities or pressing forces. Penetration efficiency and delivered antigen dose into the skin after application of microneedles were determined. In general, microneedles pierced the skin more efficiently when applied by impact application as compared to application via pressing force. However, the angle of application of the applicator on the skin can affect the velocity of the impact, influencing the penetration efficiency of microneedles. Regarding the antigen delivery into the skin, the delivered dose was increasing by increasing the velocity or pressure, and thus, increasing the penetration efficiency. These data demonstrate that an applicator is an important tool to determine optimal application conditions with ex vivo human skin.

20.
Pharm Res ; 35(10): 189, 2018 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-30105542

RESUMEN

PURPOSE: To examine the immunogenicity of diphtheria toxoid (DT) loaded mesoporous silica nanoparticles (MSNs) after coated and hollow microneedle-mediated intradermal immunization in mice. METHODS: DT was loaded into MSNs and the nanoparticle surface was coated with a lipid bilayer (LB-MSN-DT). To prepare coated microneedles, alternating layers of negatively charged LB-MSN-DT and positively charged N-trimethyl chitosan (TMC) were coated onto pH-sensitive microneedle arrays via a layer-by-layer approach. Microneedle arrays coated with 5 or 3 layers of LB-MSN-DT were used to immunize mice and the elicited antibody responses were compared with those induced by hollow microneedle-injected liquid formulation of LB-MSN-DT. Liquid DT formulation with and without TMC (DT/TMC) injected by a hollow microneedle were used as controls. RESULTS: LB-MSN-DT had an average size of about 670 nm and a zeta potential of -35 mV. The encapsulation efficiency of DT in the nanoparticles was 77%. The amount of nano-encapsulated DT coated onto the microneedle array increased linearly with increasing number of the coating layers. Nano-encapsulated DT induced stronger immune responses than DT solution when delivered intradermally via hollow microneedles, but not when delivered via coated microneedles. CONCLUSION: Both the nano-encapsulation of DT and the type of microneedles affect the immunogenicity of the antigen.


Asunto(s)
Toxoide Diftérico/administración & dosificación , Nanopartículas/química , Dióxido de Silicio/química , Animales , Toxoide Diftérico/química , Toxoide Diftérico/inmunología , Composición de Medicamentos , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Inmunización , Inmunogenicidad Vacunal , Inyecciones Intradérmicas , Ratones , Ratones Endogámicos BALB C , Tamaño de la Partícula , Porosidad , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...