Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Mol Biol ; 432(24): 166697, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33157083

RESUMEN

T cells are vital for adaptive immune responses that protect against pathogens and cancers. The T cell receptor (TCR)-CD3 complex comprises a diverse αß TCR heterodimer in noncovalent association with three invariant CD3 dimers. The TCR is responsible for recognizing antigenic peptides bound to MHC molecules (pMHC), while the CD3 dimers relay activation signals to the T cell. However, the mechanisms by which TCR engagement by pMHC is transmitted to CD3 remain mysterious, although there is growing evidence that mechanosensing and allostery both play a role. Here, we carried out NMR analysis of a human autoimmune TCR (MS2-3C8) that recognizes a self-peptide from myelin basic protein presented by the MHC class II molecule HLA-DR4. We observed pMHC-induced NMR signal perturbations in MS2-3C8 that indicate long-range effects on TCR ß chain conformation and dynamics. Our results demonstrate that, in addition to expected changes in the NMR resonances of pMHC-contacting residues, perturbations extend to the Vß/Vα, Vß/Cß, and Cß/Cα interfacial regions. Moreover, the pattern of long-range perturbations is similar to that detected previously in the ß chains of two MHC class I-restricted TCRs, thereby revealing a common allosteric pathway among three unrelated TCRs. Molecular dynamics (MD) simulations predict similar pMHC-induced effects. Taken together, our results demonstrate that pMHC binding induces long-range allosteric changes in the TCR ß chain at conserved sites in both representative MHC class I- and class II-restricted TCRs, and that these sites may play a role in the transmission of signaling information.


Asunto(s)
Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Péptidos/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Sitio Alostérico/genética , Sitios de Unión/genética , Secuencia Conservada/genética , Antígeno HLA-DR4/genética , Antígeno HLA-DR4/inmunología , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase II/genética , Humanos , Simulación de Dinámica Molecular , Péptidos/genética , Unión Proteica/genética , Conformación Proteica , Complejo Receptor-CD3 del Antígeno de Linfocito T/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Linfocitos T/inmunología
2.
J Virol ; 94(22)2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-32878891

RESUMEN

An effective vaccine for hepatitis C virus (HCV) is a major unmet need, and it requires an antigen that elicits immune responses to key conserved epitopes. Based on structures of antibodies targeting HCV envelope glycoprotein E2, we designed immunogens to modulate the structure and dynamics of E2 and favor induction of broadly neutralizing antibodies (bNAbs) in the context of a vaccine. These designs include a point mutation in a key conserved antigenic site to stabilize its conformation, as well as redesigns of an immunogenic region to add a new N-glycosylation site and mask it from antibody binding. Designs were experimentally characterized for binding to a panel of human monoclonal antibodies (HMAbs) and the coreceptor CD81 to confirm preservation of epitope structure and preferred antigenicity profile. Selected E2 designs were tested for immunogenicity in mice, with and without hypervariable region 1, which is an immunogenic region associated with viral escape. One of these designs showed improvement in polyclonal immune serum binding to HCV pseudoparticles and neutralization of isolates associated with antibody resistance. These results indicate that antigen optimization through structure-based design of the envelope glycoproteins is a promising route to an effective vaccine for HCV.IMPORTANCE Hepatitis C virus infects approximately 1% of the world's population, and no vaccine is currently available. Due to the high variability of HCV and its ability to actively escape the immune response, a goal of HCV vaccine design is to induce neutralizing antibodies that target conserved epitopes. Here, we performed structure-based design of several epitopes of the HCV E2 envelope glycoprotein to engineer its antigenic properties. Designs were tested in vitro and in vivo, demonstrating alteration of the E2 antigenic profile in several cases, and one design led to improvement of cross-neutralization of heterologous viruses. This represents a proof of concept that rational engineering of HCV envelope glycoproteins can be used to modulate E2 antigenicity and optimize a vaccine for this challenging viral target.


Asunto(s)
Hepacivirus/genética , Hepacivirus/inmunología , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Formación de Anticuerpos , Antígenos Virales/química , Antígenos Virales/genética , Antígenos Virales/inmunología , Línea Celular , Epítopos/química , Epítopos/inmunología , Femenino , Células HEK293 , Hepatitis C/inmunología , Hepatitis C/virología , Anticuerpos contra la Hepatitis C/sangre , Anticuerpos contra la Hepatitis C/inmunología , Humanos , Inmunogenicidad Vacunal , Ratones , Modelos Moleculares , Pruebas de Neutralización , Conformación Proteica , Proteínas del Envoltorio Viral/genética , Vacunas contra Hepatitis Viral/inmunología
3.
J Virol ; 93(7)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30651366

RESUMEN

The development of a prophylactic vaccine for hepatitis C virus (HCV) remains a global health challenge. Cumulative evidence supports the importance of antibodies targeting the HCV E2 envelope glycoprotein to facilitate viral clearance. However, a significant challenge for a B cell-based vaccine is focusing the immune response on conserved E2 epitopes capable of eliciting neutralizing antibodies not associated with viral escape. We hypothesized that glycosylation might influence the antigenicity and immunogenicity of E2. Accordingly, we performed head-to-head molecular, antigenic, and immunogenic comparisons of soluble E2 (sE2) produced in (i) mammalian (HEK293) cells, which confer mostly complex- and high-mannose-type glycans; and (ii) insect (Sf9) cells, which impart mainly paucimannose-type glycans. Mass spectrometry demonstrated that all 11 predicted N-glycosylation sites were utilized in both HEK293- and Sf9-derived sE2, but that N-glycans in insect sE2 were on average smaller and less complex. Both proteins bound CD81 and were recognized by conformation-dependent antibodies. Mouse immunogenicity studies revealed that similar polyclonal antibody responses were generated against antigenic domains A to E of E2. Although neutralizing antibody titers showed that Sf9-derived sE2 induced moderately stronger responses than did HEK293-derived sE2 against the homologous HCV H77c isolate, the two proteins elicited comparable neutralization titers against heterologous isolates. Given that global alteration of HCV E2 glycosylation by expression in different hosts did not appreciably affect antigenicity or overall immunogenicity, a more productive approach to increasing the antibody response to neutralizing epitopes may be complete deletion, rather than just modification, of specific N-glycans proximal to these epitopes.IMPORTANCE The development of a vaccine for hepatitis C virus (HCV) remains a global health challenge. A major challenge for vaccine development is focusing the immune response on conserved regions of the HCV envelope protein, E2, capable of eliciting neutralizing antibodies. Modification of E2 by glycosylation might influence the immunogenicity of E2. Accordingly, we performed molecular and immunogenic comparisons of E2 produced in mammalian and insect cells. Mass spectrometry demonstrated that the predicted glycosylation sites were utilized in both mammalian and insect cell E2, although the glycan types in insect cell E2 were smaller and less complex. Mouse immunogenicity studies revealed similar polyclonal antibody responses. However, insect cell E2 induced stronger neutralizing antibody responses against the homologous isolate used in the vaccine, albeit the two proteins elicited comparable neutralization titers against heterologous isolates. A more productive approach for vaccine development may be complete deletion of specific glycans in the E2 protein.


Asunto(s)
Formación de Anticuerpos/inmunología , Hepacivirus/inmunología , Insectos/inmunología , Mamíferos/inmunología , Proteínas del Envoltorio Viral/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Línea Celular , Epítopos/inmunología , Femenino , Glicosilación , Células HEK293 , Hepatitis C/inmunología , Hepatitis C/virología , Anticuerpos contra la Hepatitis C/inmunología , Humanos , Insectos/virología , Mamíferos/virología , Ratones , Polisacáridos/inmunología , Células Sf9
4.
J Biol Chem ; 293(41): 15991-16005, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30135211

RESUMEN

T cells generate adaptive immune responses mediated by the T cell receptor (TCR)-CD3 complex comprising an αß TCR heterodimer noncovalently associated with three CD3 dimers. In early T cell activation, αß TCR engagement by peptide-major histocompatibility complex (pMHC) is first communicated to the CD3 signaling apparatus of the TCR-CD3 complex, but the underlying mechanism is incompletely understood. It is possible that pMHC binding induces allosteric changes in TCR conformation or dynamics that are then relayed to CD3. Here, we carried out NMR analysis and molecular dynamics (MD) simulations of both the α and ß chains of a human antiviral TCR (A6) that recognizes the Tax antigen from human T cell lymphotropic virus-1 bound to the MHC class I molecule HLA-A2. We observed pMHC-induced NMR signal perturbations in the TCR variable (V) domains that propagated to three distinct sites in the constant (C) domains: 1) the Cß FG loop projecting from the Vß/Cß interface; 2) a cluster of Cß residues near the Cß αA helix, a region involved in interactions with CD3; and 3) the Cα AB loop at the membrane-proximal base of the TCR. A biological role for each of these allosteric sites is supported by previous mutational and functional studies of TCR signaling. Moreover, the pattern of long-range, ligand-induced changes in TCR A6 revealed by NMR was broadly similar to that predicted by the MD simulations. We propose that the unique structure of the TCR ß chain enables allosteric communication between the TCR-binding sites for pMHC and CD3.


Asunto(s)
Productos del Gen tax/metabolismo , Antígeno HLA-A2/metabolismo , Complejo Receptor-CD3 del Antígeno de Linfocito T/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Regulación Alostérica , Animales , Sitios de Unión , Productos del Gen tax/química , Antígeno HLA-A2/química , Virus Linfotrópico T Tipo 1 Humano/química , Humanos , Ratones , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Complejo Receptor-CD3 del Antígeno de Linfocito T/química , Receptores de Antígenos de Linfocitos T alfa-beta/química
5.
J Biol Chem ; 290(32): 19796-805, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26109064

RESUMEN

The T cell receptor (TCR)-CD3 complex is composed of a genetically diverse αß TCR heterodimer associated noncovalently with the invariant CD3 dimers CD3ϵγ, CD3ϵδ, and CD3ζζ. The TCR mediates peptide-MHC recognition, whereas the CD3 molecules transduce activation signals to the T cell. Although much is known about downstream T cell signaling pathways, the mechanism whereby TCR engagement by peptide-MHC initiates signaling is poorly understood. A key to solving this problem is defining the spatial organization of the TCR-CD3 complex and the interactions between its subunits. We have applied solution NMR methods to identify the docking site for CD3 on the ß chain of a human autoimmune TCR. We demonstrate a low affinity but highly specific interaction between the extracellular domains of CD3 and the TCR constant ß (Cß) domain that requires both CD3ϵγ and CD3ϵδ subunits. The mainly hydrophilic docking site, comprising 9-11 solvent-accessible Cß residues, is relatively small (∼400 Å(2)), consistent with the weak interaction between TCR and CD3 extracellular domains, and devoid of glycosylation sites. The docking site is centered on the αA and αB helices of Cß, which are located at the base of the TCR. This positions CD3ϵγ and CD3ϵδ between the TCR and the T cell membrane, permitting us to distinguish among several possible models of TCR-CD3 association. We further correlate structural results from NMR with mutational data on TCR-CD3 interactions from cell-based assays.


Asunto(s)
Complejo CD3/química , Subunidades de Proteína/química , Complejo Receptor-CD3 del Antígeno de Linfocito T/química , Receptores de Antígenos de Linfocitos T alfa-beta/química , Secuencia de Aminoácidos , Complejo CD3/genética , Complejo CD3/inmunología , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Espectroscopía de Resonancia Magnética , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Mutación , Pliegue de Proteína , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/inmunología , Complejo Receptor-CD3 del Antígeno de Linfocito T/genética , Complejo Receptor-CD3 del Antígeno de Linfocito T/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Linfocitos T/química , Linfocitos T/inmunología
6.
EMBO J ; 30(6): 1137-48, 2011 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-21297580

RESUMEN

The failure to eliminate self-reactive T cells during negative selection is a prerequisite for autoimmunity. To escape deletion, autoreactive T-cell receptors (TCRs) may form unstable complexes with self-peptide-MHC by adopting suboptimal binding topologies compared with anti-microbial TCRs. Alternatively, escape can occur by weak binding between self-peptides and MHC. We determined the structure of a human autoimmune TCR (MS2-3C8) bound to a self-peptide from myelin basic protein (MBP) and the multiple sclerosis-associated MHC molecule HLA-DR4. MBP is loosely accommodated in the HLA-DR4-binding groove, accounting for its low affinity. Conversely, MS2-3C8 binds MBP-DR4 as tightly as the most avid anti-microbial TCRs. MS2-3C8 engages self-antigen via a docking mode that resembles the optimal topology of anti-foreign TCRs, but is distinct from that of other autoreactive TCRs. Combined with a unique CDR3ß conformation, this docking mode compensates for the weak binding of MBP to HLA-DR4 by maximizing interactions between MS2-3C8 and MBP. Thus, the MS2-3C8-MBP-DR4 complex reveals the basis for an alternative strategy whereby autoreactive T cells escape negative selection, yet retain the ability to initiate autoimmunity.


Asunto(s)
Autoantígenos/inmunología , Autoantígenos/metabolismo , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/metabolismo , Cristalografía por Rayos X , Antígeno HLA-DR4/inmunología , Antígeno HLA-DR4/metabolismo , Humanos , Modelos Moleculares , Proteína Básica de Mielina/inmunología , Proteína Básica de Mielina/metabolismo , Unión Proteica , Conformación Proteica , Estructura Cuaternaria de Proteína , Receptores de Antígenos de Linfocitos T/inmunología , Resonancia por Plasmón de Superficie
7.
J Biol Chem ; 286(2): 1189-95, 2011 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-21059660

RESUMEN

Superantigens (SAgs) are bacterial or viral toxins that bind MHC class II (MHC-II) molecules and T-cell receptor (TCR) in a nonconventional manner, inducing T-cell activation that leads to inflammatory cytokine production, which may result in acute toxic shock. In addition, the emerging threat of purpura fulminans and community-associated meticillin-resistant Staphylococcus aureus emphasizes the importance of a better characterization of SAg binding to their natural ligands that may allow the development of reagents to neutralize their action. The three-dimensional structure of the complex between a mouse TCR ß chain (mVß8.2) and staphylococcal enterotoxin G (SEG) at 2.0 Å resolution revealed a binding site that does not conserve the "hot spots" present in mVß8.2-SEC2, mVß8.2-SEC3, mVß8.2-SEB, and mVß8.2-SPEA complexes. Analysis of the mVß8.2-SEG interface allowed us to explain the higher affinity of this complex compared with the others, which may account for the early activation of T-cells bearing mVß8.2 by SEG. This mode of interaction between SEG and mVß8.2 could be an adaptive advantage to bestow on the pathogen a faster rate of colonization of the host.


Asunto(s)
Enterotoxinas/química , Enterotoxinas/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/química , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Staphylococcus aureus/metabolismo , Superantígenos/química , Superantígenos/metabolismo , Animales , Sitios de Unión , Células Cultivadas , Cristalografía por Rayos X , Escherichia coli , Ratones , Unión Proteica , Estructura Terciaria de Proteína , Relación Estructura-Actividad
8.
Biochemistry ; 49(43): 9256-68, 2010 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-20836565

RESUMEN

Many functional proteins are at least partially disordered prior to binding. Although the structural transitions upon binding of disordered protein regions can influence the affinity and specificity of protein complexes, their precise energetic contributions to binding are unknown. Here, we use a model protein-protein interaction system in which a locally disordered region has been modified by directed evolution to quantitatively assess the thermodynamic and structural contributions to binding of disorder-to-order transitions. Through X-ray structure determination of the protein binding partners before and after complex formation and isothermal titration calorimetry of the interactions, we observe a correlation between protein ordering and binding affinity for complexes along this affinity maturation pathway. Additionally, we show that discrepancies between observed and calculated heat capacities based on buried surface area changes in the protein complexes can be explained largely by heat capacity changes that would result solely from folding the locally disordered region. Previously developed algorithms for predicting binding energies of protein-protein interactions, however, are unable to correctly model the energetic contributions of the structural transitions in our model system. While this highlights the shortcomings of current computational methods in modeling conformational flexibility, it suggests that the experimental methods used here could provide training sets of molecular interactions for improving these algorithms and further rationalizing molecular recognition in protein-protein interactions.


Asunto(s)
Unión Proteica , Proteínas/química , Proteínas/metabolismo , Termodinámica , Animales , Calorimetría , Evolución Molecular Dirigida , Ratones , Conformación Proteica , Proteínas/genética
9.
Proc Natl Acad Sci U S A ; 107(30): 13408-13, 2010 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-20616002

RESUMEN

Adaptive immunity in jawless vertebrates is mediated by leucine-rich repeat proteins called "variable lymphocyte receptors" (VLRs). Two types of VLR (A and B) are expressed by mutually exclusive lymphocyte populations in lamprey. VLRB lymphocytes resemble the B cells of jawed vertebrates; VLRA lymphocytes are similar to T cells. We determined the structure of a high-affinity VLRA isolated from lamprey immunized with hen egg white lysozyme (HEL) in unbound and antigen-bound forms. The VLRA-HEL complex demonstrates that certain VLRAs, like gammadelta T-cell receptors (TCRs) but unlike alphabeta TCRs, can recognize antigens directly, without a requirement for processing or antigen-presenting molecules. Thus, these VLRAs feature the nanomolar affinities of antibodies, the direct recognition of unprocessed antigens of both antibodies and gammadelta TCRs, and the exclusive expression on the lymphocyte surface that is unique to alphabeta and gammadelta TCRs.


Asunto(s)
Epítopos/inmunología , Linfocitos/inmunología , Petromyzon/inmunología , Proteínas/inmunología , Animales , Sitios de Unión , Pollos , Epítopos/química , Epítopos/metabolismo , Cinética , Proteínas Repetidas Ricas en Leucina , Linfocitos/metabolismo , Modelos Moleculares , Muramidasa/química , Muramidasa/inmunología , Muramidasa/metabolismo , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas/química , Proteínas/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Linfocitos T/inmunología
10.
Immunity ; 31(4): 598-608, 2009 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-19818651

RESUMEN

Certain cell-surface receptors engage ligands expressed on juxtaposed cells and ligands on the same cell. The structural basis for trans versus cis binding is not known. Here, we showed that Ly49 natural killer (NK) cell receptors bound two MHC class I (MHC-I) molecules in trans when the two ligand-binding domains were backfolded onto the long stalk region. In contrast, dissociation of the ligand-binding domains from the stalk and their reorientation relative to the NK cell membrane allowed monovalent binding of MHC-I in cis. The distinct conformations (backfolded and extended) define the structural basis for cis-trans binding by Ly49 receptors and explain the divergent functional consequences of cis versus trans interactions. Further analyses identified specific stalk segments that were not required for MHC-I binding in trans but were essential for inhibitory receptor function. These data identify multiple distinct roles of stalk regions for receptor function.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/metabolismo , Células Asesinas Naturales/metabolismo , Subfamilia A de Receptores Similares a Lectina de Células NK/química , Subfamilia A de Receptores Similares a Lectina de Células NK/metabolismo , Animales , Antígenos de Histocompatibilidad Clase I/inmunología , Sinapsis Inmunológicas/inmunología , Sinapsis Inmunológicas/metabolismo , Células Asesinas Naturales/inmunología , Ratones , Ratones Endogámicos C3H , Subfamilia A de Receptores Similares a Lectina de Células NK/inmunología , Unión Proteica/inmunología , Conformación Proteica , Multimerización de Proteína
11.
Nat Struct Mol Biol ; 16(7): 725-30, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19543291

RESUMEN

Variable lymphocyte receptors (VLRs) are leucine-rich repeat proteins that mediate adaptive immunity in jawless vertebrates. VLRs are fundamentally different from the antibodies of jawed vertebrates, which consist of immunoglobulin (Ig) domains. We determined the structure of an anti-hen egg white lysozyme (HEL) VLR, isolated by yeast display, bound to HEL. The VLR, whose affinity resembles that of IgM antibodies, uses nearly all its concave surface to bind the protein, in addition to a loop that penetrates into the enzyme active site. The VLR-HEL structure combined with sequence analysis revealed an almost perfect match between ligand-contacting positions and positions with highest sequence diversity. Thus, it is likely that we have defined the generalized antigen-binding site of VLRs. We further demonstrated that VLRs can be affinity-matured by 13-fold to affinities as high as those of IgG antibodies, making VLRs potential alternatives to antibodies for biotechnology applications.


Asunto(s)
Antígenos/química , Lampreas , Conformación Proteica , Proteínas/química , Proteínas/metabolismo , Receptores de Superficie Celular/química , Secuencia de Aminoácidos , Animales , Antígenos/genética , Antígenos/metabolismo , Sitios de Unión , Pollos , Proteínas Repetidas Ricas en Leucina , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Muramidasa/química , Muramidasa/genética , Muramidasa/inmunología , Proteínas/genética , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo
12.
J Biol Chem ; 283(24): 16840-9, 2008 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-18426793

RESUMEN

Natural killer (NK) cells play a vital role in the detection and destruction of virally infected and tumor cells during innate immune responses. The highly polymorphic Ly49 family of NK receptors regulates NK cell function by sensing major histocompatibility complex class I (MHC-I) molecules on target cells. Despite the determination of two Ly49-MHC-I complex structures, the molecular features of Ly49 receptors that confer specificity for particular MHC-I alleles have not been identified. To understand the functional architecture of Ly49-binding sites, we determined the crystal structures of Ly49C and Ly49G and completed refinement of the Ly49C-H-2K(b) complex. This information, combined with mutational analysis of Ly49A, permitted a structure-based classification of Ly49s that we used to dissect the binding site into three distinct regions, each having different roles in MHC recognition. One region, located at the center of the binding site, has a similar structure across the Ly49 family and mediates conserved interactions with MHC-I that contribute most to binding. However, the preference of individual Ly49s for particular MHC-I molecules is governed by two regions that flank the central region and are structurally more variable. One of the flanking regions divides Ly49s into those that recognize both H-2D and H-2K versus only H-2D ligands, whereas the other discriminates among H-2D or H-2K alleles. The modular design of Ly49-binding sites provides a framework for predicting the MHC-binding specificity of Ly49s that have not been characterized experimentally.


Asunto(s)
Antígenos Ly/química , Regulación de la Expresión Génica , Antígenos de Histocompatibilidad Clase I/química , Células Asesinas Naturales/metabolismo , Lectinas Tipo C/química , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Dimerización , Humanos , Cinética , Modelos Moleculares , Conformación Molecular , Datos de Secuencia Molecular , Unión Proteica , Receptores Similares a Lectina de Células NK , Homología de Secuencia de Aminoácido
13.
Proteins ; 68(1): 389-402, 2007 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-17427250

RESUMEN

The illnesses associated with bacterial superantigens (SAgs) such as food poisoning and toxic shock syndrome, as well as the emerging threat of purpura fulminans and community-associated methicillin-resistant S. aureus producer of SAgs, emphasize the importance of a better characterization of SAg binding to their natural ligands, which would allow the development of drugs or biological reagents able to neutralize their action. SAgs are toxins that bind major histocompatibility complex class II molecules (MHC-II) and T-cell receptors (TCR), in a nonconventional manner, inducing T-cell activation that leads to production of cytokines such as tumor necrosis factor and interleukin-2, which may result in acute toxic shock. Previously, we cloned and expressed a new natural variant of staphylococcal enterotoxin G (SEG) and evaluated its ability to stimulate in vivo murine T-cell subpopulations. We found an early, strong, and widespread stimulation of mouse Vbeta8.2 T-cells when compared with other SAgs member of the SEB subfamily. In search for the reason of the strong mitogenic potency, we determined the SEG crystal structure by X-ray crystallography to 2.2 A resolution and analyzed SEG binding to mVbeta8.2 and MHC-II. Calorimetry and SPR analysis showed that SEG has an affinity for mVbeta8.2 40 to 100-fold higher than that reported for other members of SEB subfamily, and the highest reported for a wild type SAg-TCR couple. We also found that mutations introduced in mVbeta8.2 to produce a high affinity mutant for other members of the SEB subfamily do not greatly affect binding to SEG. Crystallographic analysis and docking into mVbeta8.2 in complex with SEB, SEC3, and SPEA showed that the deletions and substitution of key amino acids remodeled the putative surface of the mVbeta8.2 binding site without affecting the binding to MHC-II. This results in a SAg with improved binding to its natural ligands, which may confer a possible evolutionary advantage for bacterial strains expressing SEG.


Asunto(s)
Enterotoxinas/química , Modelos Moleculares , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Staphylococcus aureus/inmunología , Superantígenos/química , Linfocitos T/inmunología , Animales , Calorimetría , Clonación Molecular , Cristalografía por Rayos X , Enterotoxinas/metabolismo , Antígeno HLA-DR1/metabolismo , Ratones , Mutagénesis , Unión Proteica , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Staphylococcus aureus/química , Superantígenos/metabolismo , Linfocitos T/metabolismo , Ultracentrifugación
14.
Structure ; 13(12): 1775-87, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16338406

RESUMEN

Although protein-protein interactions are involved in nearly all cellular processes, general rules for describing affinity and selectivity in protein-protein complexes are lacking, primarily because correlations between changes in protein structure and binding energetics have not been well determined. Here, we establish the structural basis of affinity maturation for a protein-protein interaction system that we had previously characterized energetically. This model system exhibits a 1500-fold affinity increase. Also, its affinity maturation is restricted by negative intramolecular cooperativity. With three complex and six unliganded variant X-ray crystal structures, we provide molecular snapshots of protein interface remodeling events that span the breadth of the affinity maturation process and present a comprehensive structural view of affinity maturation. Correlating crystallographically observed structural changes with measured energetic changes reveals molecular bases for affinity maturation, intramolecular cooperativity, and context-dependent binding.


Asunto(s)
Enterotoxinas/química , Modelos Moleculares , Fragmentos de Péptidos/química , Mapeo de Interacción de Proteínas , Receptores de Antígenos de Linfocitos T alfa-beta/química , Sustitución de Aminoácidos , Animales , Cristalografía por Rayos X , Enterotoxinas/genética , Ratones , Mutación , Fragmentos de Péptidos/genética , Conformación Proteica , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...