Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 18253, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107333

RESUMEN

Over time, with the increase in population and the subsequent increase in energy consumption and also due to the non-renewability of fossil fuels, the study of alternative fuels has increased. One of these fuels is biodiesel, which is a suitable alternative to fossil fuels such as diesel and received much attention from researchers today. For this reason, measuring the physical properties of biodiesel is of great importance. Due to the high cost and time-consuming nature of laboratory methods, numerical methods are used to estimate material properties. The novelty of this research was the use of two white box models, including Group method of data handling (GMDH) and Gene expression programming (GEP), which work on the basis of artificial intelligence. By using these models, two simple mathematical equations with high accuracy were presented to predict the surface tension of biodiesel. These models can be used at different temperatures and molecular weights. To do modeling, 78 laboratory data available in the literature were gathered and the data were randomly divided into two groups, train and test, in a ratio of 80 and 20. The input parameters include mass fraction of fatty acid ethyl esters and temperature (T), and esters are divided into three groups according to their molecular weight: less than 200 (Mw1), between 200 and 300 (Mw2), and greater than 300 (Mw3). The statistical error parameters were calculated for the two models developed in this research and after comparing the results, it was found that the GMDH model estimates the surface tension of biodiesel with a higher accuracy. The average absolute relative error for GMDH and GEP models was reported as 0.97 and 1.89, respectively. Also, other statistical error parameters of GMDH such as RMSE, SD, and R2 for the GMDH model were obtained as 0.444, 0.000233, and 0.9233, respectively. Moreover, sensitivity analysis showed that temperature has the highest impact on the surface tension of biodiesel, which is also an inverse effect. Finally, suspicious laboratory and outlier data points were identified using the Leverage technique. According to this analysis, only five data points were identified as outliers and suspicious laboratory data.

2.
RSC Adv ; 12(53): 34566, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36545627

RESUMEN

[This retracts the article DOI: 10.1039/D0RA04566G.].

3.
Sci Rep ; 12(1): 15488, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109536

RESUMEN

For the first time, a bio-photo-catalyst is synthesized in a microfluidic platform. The microchannel, which is wall-coated by in situ synthesized bio-photo-catalyst is used as an opto-fluidic reactor for amoxicillin degradation. Analyses including SEM, XRD, FTIR, Raman, UV-Vis spectra, and DLS have been used to characterize samples. The structure and morphology of TiO2 in microfluidic assisted synthesis are studied at 70-120 °C. The results show that both single-crystalline anatase sample and two-phase samples of anatase and rutile can be attained. According to SEM images, the smallest size and the narrowest particle size distribution (0.86 nm [Formula: see text]) is achieved by synthesis at 70 °C. Elemental mapping of Ti shows a uniform coating layer on inner walls. Raman signals besides the primary amines in FTIR results show the biological activity of the cross-linked Glucose oxidase (GOx), which is aimed for situ generation of H2O2. FTIR comparison of bulk and spiral microfluidic synthesized ZnO indicates identical bonds. SEM-coupled with performance experimentation reveal that by regulating the flowrate of spiral micromixer for ZnCl2 at 25 µl/min and NaOH at 50 µl/min, the narrowest size distribution and best the bio-photo-catalytic performance of ZnO nanoparticles is observed.


Asunto(s)
Glucosa Oxidasa , Óxido de Zinc , Aminas , Amoxicilina , Peróxido de Hidrógeno , Microfluídica , Hidróxido de Sodio , Temperatura , Titanio , Óxido de Zinc/química
4.
Sci Rep ; 12(1): 5119, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35332259

RESUMEN

The synthesis of polymeric nanoparticles (NPs) with efficient drug loading content and targeting moieties is an attractive field and remains a challenge in drug delivery systems. Atomistic investigations can provide an in-depth understanding of delivery devices and reduce the number of expensive experiments. In this paper, we studied the self-assembly of poly (lactic-co-glycolic acid)-b-poly (ethylene glycol) with different molecular weights and surface compositions. The innovation of this molecular study is the loading of an antitumor drug (docetaxel) on a targeting ligand (riboflavin). According to this work, a novel, biocompatible and targeted system for cancer treatment has been developed. The obtained results revealed a correlation between polymer molecular weight and the stability of particles. In this line, samples including 20 and 10 w/w% moiety NPs formed from polymers with 3 and 4.5 kDa backbone sizes, respectively, are the stable models with the highest drug loading and entrapment efficiencies. Next, we evaluated NP morphology and found that NPs have a core/shell structure consisting of a hydrophobic core with a shell of poly (ethylene glycol) and riboflavin. Interestingly, morphology assessments confirmed that the targeting moiety located on the surface can improve drug delivery to receptors and cancerous cells. The developed models provided significant insight into the structure and morphology of NPs before the synthesis and further analysis of NPs in biological environments. However, in the best cases of this system, Dynamic Light Scattering (DLS) tests were also taken and the results were consistent with the results obtained from All Atom and Coarse Grained simulations.


Asunto(s)
Nanopartículas , Polímeros , Docetaxel , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Preparaciones Farmacéuticas , Polietilenglicoles/química , Polímeros/química , Riboflavina
5.
Sci Rep ; 11(1): 22328, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34785737

RESUMEN

Today, sugarcane bagasse (SB) is used for bioethanol and biodiesel production, energy generation, and adsorbent synthesis. The goal of this project is to determine the optimized conditions for producing adsorbent from sugarcane bagasse using hydrothermal carbonization (HTC) and KOH activation. To optimize process parameters such as reaction temperature, residence time, ZnCl2/SB mixing ratios, and water/SB mixing ratios, response surface methodology was used. The results revealed that the optimum modified adsorption occurred at 180 °C, 11.5 h, a water to biomass ratio of (5:1), and a ZnCl2 to precursor ratio of (3.5:1). The physicochemical features of optimum activated hydrochar were investigated, as well as batch adsorption experiments. The pseudo-second-order kinetic model and the Langmuir isotherm model were found to fit the experimental results in batch adsorption studies [[Formula: see text] (mg/g)]. Thermodynamic experiments further confirmed the spontaneous and exothermic adsorption mechanism.

6.
ACS Omega ; 6(36): 23117-23128, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34549113

RESUMEN

Microfluidic-based synthesis is a powerful technique to prepare well-defined homogenous nanoparticles (NPs). However, the mechanisms defining NP properties, especially size evolution in a microchannel, are not fully understood. Herein, microfluidic and bulk syntheses of riboflavin (RF)-targeted poly(lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-PEG-RF) micelles were evaluated experimentally and computationally. Using molecular dynamics (MD), a conventional "random" model for bulk self-assembly of PLGA-PEG-RF was simulated and a conceptual "interface" mechanism was proposed for the microfluidic self-assembly at an atomic scale. The simulation results were in agreement with the observed experimental outcomes. NPs produced by microfluidics were smaller than those prepared by the bulk method. The computational approach suggested that the size-determining factor in microfluidics is the boundary of solvents in the entrance region of the microchannel, explaining the size difference between the two experimental methods. Therefore, this computational approach can be a powerful tool to gain a deeper understanding and optimize NP synthesis.

7.
Sci Rep ; 11(1): 12130, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34108580

RESUMEN

It has been proved that cell-imprinted substrates molded from template cells can be used for the re-culture of that cell while preserving its normal behavior or to differentiate the cultured stem cells into the template cell. In this study, a microfluidic device was presented to modify the previous irregular cell-imprinted substrate and increase imprinting efficiency by regular and objective cell culture. First, a cell-imprinted substrate from template cells was prepared using a microfluidic chip in a regular pattern. Another microfluidic chip with the same pattern was then aligned on the cell-imprinted substrate to create a chondrocyte-imprinted-based integrated microfluidic device. Computational fluid dynamics (CFD) simulations were used to obtain suitable conditions for injecting cells into the microfluidic chip before performing experimental evaluations. In this simulation, the effect of input flow rate, number per unit volume, and size of injected cells in two different chip sizes were examined on exerted shear stress and cell trajectories. This numerical simulation was first validated with experiments with cell lines. Finally, chondrocyte was used as template cell to evaluate the chondrogenic differentiation of adipose-derived mesenchymal stem cells (ADSCs) in the chondrocyte-imprinted-based integrated microfluidic device. ADSCs were positioned precisely on the chondrocyte patterns, and without using any chemical growth factor, their fibroblast-like morphology was modified to the spherical morphology of chondrocytes after 14 days of culture. Both immunostaining and gene expression analysis showed improvement in chondrogenic differentiation compared to traditional imprinting methods. This study demonstrated the effectiveness of cell-imprinted-based integrated microfluidic devices for biomedical applications.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Condrocitos/citología , Condrogénesis , Dispositivos Laboratorio en un Chip/estadística & datos numéricos , Células Madre Mesenquimatosas/citología , Técnicas Analíticas Microfluídicas/métodos , Animales , Bioimpresión , Células Cultivadas , Humanos , Conejos
8.
Mater Sci Eng C Mater Biol Appl ; 121: 111794, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33579444

RESUMEN

Separating cells from the body and cultivating them in vitro will alter the function of cells. Therefore, for optimal cell culture in the laboratory, conditions similar to those of their natural growth should be provided. In previous studies, it has been shown that the use of cellular shape at the culture surface can regulate cellular function. In this work, the efficiency of the imprinting method increased by using microfluidic chip design and fabrication. In this method, first, a cell-imprinted substrate of chondrocytes was made using a microfluidic chip. Afterwards, stem cells were cultured on a cell-imprinted substrate using a second microfluidic chip aligned with the substrate. Therefore, stem cells were precisely placed on the chondrocyte patterns on the substrate and their fibroblast-like morphology was changed to chondrocyte's spherical morphology after 14-days culture in the chip without using any chemical growth factor. After chondrogenic differentiation and in vitro assessments (real-time PCR and immunocytotoxicity), differentiated stem cells were transferred on a collagen-hyaluronic acid scaffold and transplanted in articular cartilage defect of the rabbit. After 6 months, the post-transplantation analysis showed that the articular cartilage defect had been successfully regenerated in differentiated stem cell groups in comparison with the controls. In conclusion, this study showed the potency of the imprinting method for inducing chondrogenicity in stem cells, which can be used in clinical trials due to the safety of the procedure.


Asunto(s)
Cartílago Articular , Células Madre Mesenquimatosas , Animales , Diferenciación Celular , Células Cultivadas , Condrocitos , Condrogénesis , Dispositivos Laboratorio en un Chip , Conejos , Regeneración , Ingeniería de Tejidos
9.
Bioresour Technol ; 311: 123561, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32454420

RESUMEN

The aim of this work was to study fast pyrolysis of three microalgae species in a continuous bench-scale conical spouted bed reactor at 500 °C. Bio-gas, bio-oil and bio-char yields have been determined and characterized by using GC, GC/MS, elemental analyzer and SEM. Bio-oil was the main product obtained through pyrolysis of microalgae. The non-condensable gaseous stream is made up of mainly hydrogen, carbon monoxide and carbon dioxide, apart from other light hydrocarbons detected in lower concentration, as are methane, ethane, ethylene, propane and propylene. The compounds identified in the bio-oil have been categorized into hydrocarbons, nitrogen containing compounds, ketones, alcohols, acids, lactones, phenols and aldehydes. The nitrogen and carbon contents of the microalgae bio-chars are higher than those for bio-chars derived from other biomasses. Pyrolysis improved the morphology and porous structure of microalgae. Finally, the mechanism involving microalgae pyrolysis has been approached and the main reaction pathways have been proposed.


Asunto(s)
Microalgas , Biocombustibles , Biomasa , Calor , Pirólisis
10.
Soft Matter ; 16(22): 5250-5260, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32458880

RESUMEN

Nanoparticles (NPs) used for targeted delivery purposes are rapidly gaining importance in diagnostic and therapeutic fields. These agents have been studied extensively so far to reveal their optimal physicochemical properties including the effects of ligands and their density on the surface of NPs. This article was conducted through a computational approach (all-atom molecular dynamics simulations) to predict the stability of NPs based on a poly-lactic-co-glycolic acid (PLGA) hydrophobic core with a poly-ethylene glycol (PEG) hydrophilic shell and varying numbers of riboflavin (RF) molecules as ligands. Depending on the molecular weight of the polymers, the most stable composition of NPs was achieved at 20 wt% and 10 wt% PLGA-PEG-RF for PLGA3kDa-PEG2kDa and PLGA4.5kDa-PEG2kDa polymers, respectively. According to the simulations, riboflavin molecules were located on the surface of the NPs, which would indicate that riboflavin-bound PLGA-PEG NPs could be efficiently utilized for active targeting purposes. To scrutinize the simulation results, NPs with riboflavin ligands were synthesized and put into in vitro experiments. Outstandingly, the empirical outcomes revealed that the hydrodynamic sizes of NPs also met minimum points at 20 and 10 wt% for PLGA3kDa-PEG2kDa and PLGA4.5kDa-PEG2kDa, respectively. Moreover, similar trends in the gyration radius as a function of riboflavin content were observed in the simulation analysis and the experimental results, which would indicate that the method of molecular dynamics (MD) simulation is a reliable mathematical technique and could be applied for predicting the physicochemical properties of NPs.


Asunto(s)
Modelos Moleculares , Nanopartículas/química , Polietilenglicoles/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Riboflavina/química , Sistemas de Liberación de Medicamentos
11.
RSC Adv ; 11(1): 229-249, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35423057

RESUMEN

Core-shell drug-carrier particles are known for their unique features. Due to the combination of superior properties not exhibited by the individual components, core-shell particles have gained a lot of interest. The structures could integrate core and shell characteristics and properties. These particles were designed for controlled drug release in the desired location. Therefore, the side effects would be minimized. So, these particles' advantages have led to the introduction of new methods and ideas for their fabrication. In the past few years, the generation of drug carrier core-shell particles in microfluidic chips has attracted much attention. This method makes it possible to produce particles at nanometer and micrometer levels of the same shape and size; it usually costs less than other methods. The other advantages of using microfluidic techniques compared to conventional bulk methods are integration capability, reproducibility, and higher efficiency. These advantages have created a positive outlook on this approach. This review gives an overview of the various fluidic concepts that are used to generate microparticles or nanoparticles. Also, an overview of traditional and more recent microfluidic devices and their design and structure for the generation of core-shell particles is given. The unique benefits of the microfluidic technique for core-shell drug carrier particle generation are demonstrated.

12.
RSC Adv ; 10(46): 27560-27574, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35516933

RESUMEN

Droplet-based microfluidic systems have been shown to be compatible with many chemical and biological reagents and capable of performing a variety of operations that can be rendered programmable and reconfigurable. This platform has dimensional scaling benefits that have enabled controlled and rapid mixing of fluids in the droplet reactors, resulting in decreased reaction times. This, coupled with the precise generation and repeatability of droplet operations, has made the droplet-based microfluidic system a potent high throughput platform for biomedical research and applications. In addition to being used as micro-reactors ranging from the nano- to femtoliter (10-15 liters) range; droplet-based systems have also been used to directly synthesize particles and encapsulate many biological entities for biomedicine and biotechnology applications. For this, in the following article we will focus on the various droplet operations, as well as the numerous applications of the system and its future in many advanced scientific fields. Due to advantages of droplet-based systems, this technology has the potential to offer solutions to today's biomedical engineering challenges for advanced diagnostics and therapeutics.

13.
RSC Adv ; 10(31): 18280-18295, 2020 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35517190

RESUMEN

Developments in the fields of lab-on-a-chip and microfluidic technology have benefited nanomaterial production processes due to fluid miniaturization. The ability to acquire, manage, create, and modify structures on a nanoscale is of great interest in scientific and technological fields. Recently, more attention has been paid to the production of core-shell nanomaterials because of their use in various fields, such as drug delivery. Heterostructured nanomaterials have more reliable performance than the individual core or shell materials. Nanoparticle synthesis is a complex process; therefore, various techniques exist for the production of different types of nanoparticles. Among these techniques, microfluidic methods are unique and reliable routes, which can be used to produce nanoparticles for drug delivery applications.

14.
RSC Adv ; 10(67): 40637-40648, 2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-35519185

RESUMEN

In this work, the effect of environment and additives on the self-assembly and delivery of doxorubicin (DOX) have been studied. A microfluidic system with better control over molecular interactions and high surface to volume ratio has superior performance in comparison to the bulk system. Moreover, carbon nanotube (CNT) and CNT-doped structures have a high surface area to incorporate the DOX molecules into a polymer and the presence of functional groups can influence the polymer-drug interactions. In this work, the interactions of DOX with both the polymeric complex and the nanotube structure have been investigated. For quantification of the interactions, H-bonding, gyration radius, root-mean-square deviation (RMSD), Gibbs free energy, radial distribution function (RDF), energy, and Solvent Accessible Surface Area (SASA) analyses have been performed. The most stable micelle-DOX interaction is attributed to the presence of BCN in the microfluidic system according to the gyration radius and RMSD. Meanwhile, for DOX-doped CNT interaction the phosphorus-doped CNT in the microfluidic system is more stable. The highest electrostatic interaction can be seen between polymeric micelles and DOX in the presence of BCN. For nanotube-drug interaction, phosphorus-doped carbon nanotubes in the microfluidic system have the largest electrostatic interaction with the DOX. RDF results show that in the microfluidic system, nanotube-DOX affinity is larger than that of nanotube-micelle.

15.
RSC Adv ; 10(54): 32843-32844, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35557504

RESUMEN

[This corrects the article DOI: 10.1039/D0RA04566G.].

16.
RSC Adv ; 9(4): 2055-2072, 2019 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35516107

RESUMEN

Poly(lactic-co-glycolic acid) (PLGA) is a biocompatible and biodegradable polymer that recently attracted attention for use as part of drug delivery systems (DDS). In this context, there is an emerging need for a rapid, reliable and reproducible method of synthesis. Here, microfluidic systems provide great opportunities for synthesizing carriers in a tightly controlled manner and with low consumption of materials, energy and time. These miniature devices have been the focus of recent research since they can address the challenges inherent to the bulk system, e.g. low drug loading efficiency and encapsulation, broad size distribution and burst initial release. In this article, we provide an overview of current microfluidic systems used in drug delivery production, with a special focus on PLGA-based DDS. In this context, we highlight the advantages associated with the use of microchip systems in the fabrication of nanoparticles (NPs) and microparticles (MPs), e.g. in achieving complex morphologies. Furthermore, we discuss the challenges for selecting proper microfluidics for targeted DDS production in a translational setting and introduce strategies that are used to overcome microfluidics shortcomings, like low throughput for production.

17.
Bioresour Technol ; 247: 66-72, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28946096

RESUMEN

Due to the depletion of fossil fuels and their environmental issues, it is necessary to find energy resources which are renewable. Biomass becomes promising feedstock for bio-fuel production. The aim of this study is to investigate thermal decomposition behavior and the effect of third component on the binary mixture pyrolysis using thermogravimetric analysis (TGA). Experiments were carried out at heating rates of 10, 20 and 40°C/min from ambient temperature to 600°C. Two divided groups of peaks were observed in DTG curve of tertiary mixture which the first one was corresponded to microalgae and wood and the second one was belonged to polymer. It is stated that microalgae and wood can improve the degradation process while polymer can delay the decomposition process of mixture. Mentioned positive effect of microalgae and wood could be related to main decomposition temperature and component of microalgae and wood. On the other hand, polymer reduces weight loss of binary mixture and has negative effect of it. The kinetics analysis showed that activation energy (E) and pre-exponential factor (A) of tertiary mixture was slightly lower than that of microalgae-polymer mixture which had the lowest E and A.


Asunto(s)
Microalgas , Polímeros , Biomasa , Cinética , Termogravimetría , Madera
18.
RSC Adv ; 8(18): 9685-9696, 2018 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35540838

RESUMEN

This study investigates the effectiveness of different lost circulation materials (LCMs) in controlling the lost circulation of heavy-weight and oil-based mud. The bridging material tester (BMT) and three-dimensional fractures were used to evaluate the fracture sealing performance of different additives. Two new eco-friendly LCMs, namely, RIPI-LQ and X1-Seal were used in the present study. RIPI-LQ was made from a special type of grass and X1-Seal additive was made from a flowering plant. Due to eco-friendly characteristics of these two additives, the risk of environmental effect was reduced. The experimental results clearly indicated that the performance of these new additives was superior to widely used LCMs such as Quick Seal, mica, oyster shell and walnut shell. Finally, the results of this study were validated using a field test. The field test results demonstrated that these new eco-friendly LCMs were able to control different types of lost circulation.

19.
Bioresour Technol ; 243: 481-491, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28689141

RESUMEN

Thermal decomposition behavior and kinetics of microalgae Chlorella vulgaris, wood and polypropylene were investigated using thermogravimetric analysis (TGA). Experiments were carried out at heating rates of 10, 20 and 40°C/min from ambient temperature to 600°C. The results show that pyrolysis process of C. vulgaris and wood can be divided into three stages while pyrolysis of polypropylene occurs almost totally in one step. It is shown that wood can delay the pyrolysis of microalgae while microalgae can accelerate the pyrolysis of wood. The existence of polymer during the pyrolysis of microalgae or wood will lead to two divided groups of peaks in DTG curve of mixtures. The results showed that interaction is inhibitive rather than synergistic during the decomposition process of materials. Kinetics of process is studied by the Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO). The average E values obtained from FWO and KAS methods were 131.228 and 142.678kJ/mol, respectively.


Asunto(s)
Chlorella vulgaris , Polipropilenos , Madera , Cinética , Microalgas , Termogravimetría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...