Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
ACS Cent Sci ; 10(4): 793-802, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38680558

RESUMEN

Antigen processing is critical for therapeutic vaccines to generate epitopes for priming cytotoxic T cell responses against cancer and pathogens, but insufficient processing often limits the quantity of epitopes released. We address this challenge using machine learning to ascribe a proteasomal degradation score to epitope sequences. Epitopes with varying scores were translocated into cells using nontoxic anthrax proteins. Epitopes with a low score show pronounced immunogenicity due to antigen processing, but epitopes with a high score show limited immunogenicity. This work sheds light on the sequence-activity relationships between proteasomal degradation and epitope immunogenicity. We anticipate that future efforts to incorporate proteasomal degradation signals into vaccine designs will lead to enhanced cytotoxic T cell priming by these vaccines in clinical settings.

2.
Sci Adv ; 10(11): eadh9547, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489372

RESUMEN

Solid tumors, especially those with aberrant MYCN activation, often harbor an immunosuppressive microenvironment to fuel malignant growth and trigger treatment resistance. Despite this knowledge, there are no effective strategies to tackle this problem. We found that chemokine-like factor (CKLF) is highly expressed by various solid tumor cells and transcriptionally up-regulated by MYCN. Using the MYCN-driven high-risk neuroblastoma as a model system, we demonstrated that as early as the premalignant stage, tumor cells secrete CKLF to attract CCR4-expressing CD4+ cells, inducing immunosuppression and tumor aggression. Genetic depletion of CD4+ T regulatory cells abolishes the immunorestrictive and protumorigenic effects of CKLF. Our work supports that disrupting CKLF-mediated cross-talk between tumor and CD4+ suppressor cells represents a promising immunotherapeutic approach to battling MYCN-driven tumors.


Asunto(s)
Quimiocinas , Proteínas con Dominio MARVEL , Proteína Proto-Oncogénica N-Myc , Neuroblastoma , Humanos , Línea Celular Tumoral , Quimiocinas/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas con Dominio MARVEL/metabolismo , Proteína Proto-Oncogénica N-Myc/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patología , Neuroblastoma/terapia , Microambiente Tumoral
3.
Nat Nanotechnol ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491184

RESUMEN

Multivalent presentation of ligands often enhances receptor activation and downstream signalling. DNA origami offers a precise nanoscale spacing of ligands, a potentially useful feature for therapeutic nanoparticles. Here we use a square-block DNA origami platform to explore the importance of the spacing of CpG oligonucleotides. CpG engages Toll-like receptors and therefore acts to activate dendritic cells. Through in vitro cell culture studies and in vivo tumour treatment models, we demonstrate that square blocks induce Th1 immune polarization when CpG is spaced at 3.5 nm. We observe that this DNA origami vaccine enhances DC activation, antigen cross-presentation, CD8 T-cell activation, Th1-polarized CD4 activation and natural-killer-cell activation. The vaccine also effectively synergizes with anti-PD-L1 for improved cancer immunotherapy in melanoma and lymphoma models and induces long-term T-cell memory. Our results suggest that DNA origami may serve as a platform for controlling adjuvant spacing and co-delivering antigens in vaccines.

4.
Nature ; 625(7994): 377-384, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38057668

RESUMEN

Cytokines mediate cell-cell communication in the immune system and represent important therapeutic targets1-3. A myriad of studies have highlighted their central role in immune function4-13, yet we lack a global view of the cellular responses of each immune cell type to each cytokine. To address this gap, we created the Immune Dictionary, a compendium of single-cell transcriptomic profiles of more than 17 immune cell types in response to each of 86 cytokines (>1,400 cytokine-cell type combinations) in mouse lymph nodes in vivo. A cytokine-centric view of the dictionary revealed that most cytokines induce highly cell-type-specific responses. For example, the inflammatory cytokine interleukin-1ß induces distinct gene programmes in almost every cell type. A cell-type-centric view of the dictionary identified more than 66 cytokine-driven cellular polarization states across immune cell types, including previously uncharacterized states such as an interleukin-18-induced polyfunctional natural killer cell state. Based on this dictionary, we developed companion software, Immune Response Enrichment Analysis, for assessing cytokine activities and immune cell polarization from gene expression data, and applied it to reveal cytokine networks in tumours following immune checkpoint blockade therapy. Our dictionary generates new hypotheses for cytokine functions, illuminates pleiotropic effects of cytokines, expands our knowledge of activation states of each immune cell type, and provides a framework to deduce the roles of specific cytokines and cell-cell communication networks in any immune response.


Asunto(s)
Citocinas , Inmunidad , Análisis de la Célula Individual , Animales , Ratones , Comunicación Celular/efectos de los fármacos , Citocinas/inmunología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunidad/efectos de los fármacos , Interleucina-18/inmunología , Interleucina-1beta/inmunología , Células Asesinas Naturales/inmunología , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Transducción de Señal/efectos de los fármacos , Programas Informáticos
5.
Blood ; 143(10): 895-911, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-37890146

RESUMEN

ABSTRACT: A major hurdle in adoptive T-cell therapy is cell exhaustion and failure to maintain antitumor responses. Here, we introduce an induced pluripotent stem cell (iPSC) strategy for reprogramming and revitalizing precursor exhausted B-cell maturation antigen (BCMA)-specific T cells to effectively target multiple myeloma (MM). Heteroclitic BCMA72-80 (YLMFLLRKI)-specific CD8+ memory cytotoxic T lymphocytes (CTL) were epigenetically reprogrammed to a pluripotent state, developed into hematopoietic progenitor cells (CD34+ CD43+/CD14- CD235a-), differentiated into the T-cell lineage and evaluated for their polyfunctional activities against MM. The final T-cell products demonstrated (1) mature CD8αß+ memory phenotype, (2) high expression of activation or costimulatory molecules (CD38, CD28, and 41BB), (3) no expression of immune checkpoint and senescence markers (CTLA4, PD1, LAG3, and TIM3; CD57), and (4) robust proliferation and polyfunctional immune responses to MM. The BCMA-specific iPSC-T cells possessed a single T-cell receptor clonotype with cognate BCMA peptide recognition and specificity for targeting MM. RNA sequencing analyses revealed distinct genome-wide shifts and a distinctive transcriptional profile in selected iPSC clones, which can develop CD8αß+ memory T cells. This includes a repertoire of gene regulators promoting T-cell lineage development, memory CTL activation, and immune response regulation (LCK, IL7R, 4-1BB, TRAIL, GZMB, FOXF1, and ITGA1). This study highlights the potential application of iPSC technology to an adaptive T-cell therapy protocol and identifies specific transcriptional patterns that could serve as a biomarker for selection of suitable iPSC clones for the successful development of antigen-specific CD8αß+ memory T cells to improve the outcome in patients with MM.


Asunto(s)
Antineoplásicos , Antígenos CD8 , Células Madre Pluripotentes Inducidas , Mieloma Múltiple , Humanos , Mieloma Múltiple/genética , Mieloma Múltiple/terapia , Células Madre Pluripotentes Inducidas/metabolismo , Antígeno de Maduración de Linfocitos B/metabolismo , Linfocitos T Citotóxicos , Antineoplásicos/metabolismo
6.
Front Immunol ; 14: 1269335, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37942334

RESUMEN

Introduction: Severe respiratory illness is the most prominent manifestation of patients infected with SARS-CoV-2, and yet the molecular mechanisms underlying severe lung disease in COVID-19 affected patients still require elucidation. Human leukocyte antigen class I (HLA-I) expression is crucial for antigen presentation and the host's response to SARS-CoV-2. Methods: To gain insights into the immune response and molecular pathways involved in severe lung disease, we performed immunopeptidomic and proteomic analyses of lung tissues recovered at four COVID-19 autopsy and six non-COVID-19 transplants. Results: We found signals of tissue injury and regeneration in lung fibroblast and alveolar type I/II cells, resulting in the production of highly immunogenic self-antigens within the lungs of COVID-19 patients. We also identified immune activation of the M2c macrophage as the primary source of HLA-I presentation and immunogenicity in this context. Additionally, we identified 28 lung signatures that can serve as early plasma markers for predicting infection and severe COVID-19 disease. These protein signatures were predominantly expressed in macrophages and epithelial cells and were associated with complement and coagulation cascades. Discussion: Our findings emphasize the significant role of macrophage-mediated immunity in the development of severe lung disease in COVID-19 patients.


Asunto(s)
COVID-19 , Humanos , COVID-19/patología , SARS-CoV-2 , Proteómica , Pulmón , Biopsia
7.
Cancer Res ; 83(23): 3846-3860, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37819236

RESUMEN

NUT carcinoma (NC) is an aggressive squamous carcinoma defined by the BRD4-NUT fusion oncoprotein. Routinely effective systemic treatments are unavailable for most NC patients. The lack of an adequate animal model precludes identifying and leveraging cell-extrinsic factors therapeutically in NC. Here, we created a genetically engineered mouse model (GEMM) of NC that forms a Brd4::NUTM1 fusion gene upon tamoxifen induction of Sox2-driven Cre. The model displayed complete disease penetrance, with tumors arising from the squamous epithelium weeks after induction and all mice succumbing to the disease shortly thereafter. Closely resembling human NC (hNC), GEMM tumors (mNC) were poorly differentiated squamous carcinomas with high expression of MYC that metastasized to solid organs and regional lymph nodes. Two GEMM-derived cell lines were developed whose transcriptomic and epigenetic landscapes harbored key features of primary GEMM tumors. Importantly, GEMM tumor and cell line transcriptomes co-classified with those of human NC. BRD4-NUT also blocked differentiation and maintained the growth of mNC as in hNC. Mechanistically, GEMM primary tumors and cell lines formed large histone H3K27ac-enriched domains, termed megadomains, that were invariably associated with the expression of key NC-defining proto-oncogenes, Myc and Trp63. Small-molecule BET bromodomain inhibition (BETi) of mNC induced differentiation and growth arrest and prolonged survival of NC GEMMs, as it does in hNC models. Overall, tumor formation in the NC GEMM is definitive evidence that BRD4-NUT alone can potently drive the malignant transformation of squamous progenitor cells into NC. SIGNIFICANCE: The development of an immunocompetent model of NUT carcinoma that closely mimics the human disease provides a valuable global resource for mechanistic and preclinical studies to improve treatment of this incurable disease.


Asunto(s)
Carcinoma de Células Escamosas , Factores de Transcripción , Animales , Humanos , Ratones , Carcinoma de Células Escamosas/patología , Proteínas de Ciclo Celular/genética , Transformación Celular Neoplásica/genética , Proteínas Nucleares/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
bioRxiv ; 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37662211

RESUMEN

Antigen processing is critical for producing epitope peptides that are presented by HLA molecules for T cell recognition. Therapeutic vaccines aim to harness these epitopes for priming cytotoxic T cell responses against cancer and pathogens, but insufficient processing often reduces vaccine efficacy through limiting the quantity of epitopes released. Here, we set out to improve antigen processing by harnessing protein degradation signals called degrons from the ubiquitin-proteasome system. We used machine learning to generate a computational model that ascribes a proteasomal degradation score between 0 and 100. Epitope peptides with varying degron activities were synthesized and translocated into cells using nontoxic anthrax proteins: protective antigen (PA) and the N-terminus of lethal factor (LFN). Immunogenicity studies revealed epitope sequences with a low score (<25) show pronounced T-cell activation but epitope sequences with a higher score (>75) provide limited activation. This work sheds light on the sequence-activity relationships between proteasomal degradation and epitope immunogenicity, through conserving the epitope region but varying the flanking sequence. We anticipate that future efforts to incorporate proteasomal degradation signals into vaccine designs will lead to enhanced cytotoxic T cell priming by vaccine therapeutics in clinical settings.

10.
Nat Cancer ; 4(7): 1016-1035, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37430060

RESUMEN

Anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC) is treated with ALK tyrosine kinase inhibitors (TKIs), but the lack of activity of immune checkpoint inhibitors (ICIs) is poorly understood. Here, we identified immunogenic ALK peptides to show that ICIs induced rejection of ALK+ tumors in the flank but not in the lung. A single-peptide vaccination restored priming of ALK-specific CD8+ T cells, eradicated lung tumors in combination with ALK TKIs and prevented metastatic dissemination of tumors to the brain. The poor response of ALK+ NSCLC to ICIs was due to ineffective CD8+ T cell priming against ALK antigens and is circumvented through specific vaccination. Finally, we identified human ALK peptides displayed by HLA-A*02:01 and HLA-B*07:02 molecules. These peptides were immunogenic in HLA-transgenic mice and were recognized by CD8+ T cells from individuals with NSCLC, paving the way for the development of a clinical vaccine to treat ALK+ NSCLC.


Asunto(s)
Vacunas contra el Cáncer , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Ratones , Animales , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Quinasa de Linfoma Anaplásico/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Vacunas contra el Cáncer/uso terapéutico , Proteínas Tirosina Quinasas Receptoras/uso terapéutico , Linfocitos T CD8-positivos/patología , Vacunas de Subunidad/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/uso terapéutico , Ratones Transgénicos , Vacunación
11.
Methods Mol Biol ; 2673: 53-67, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37258906

RESUMEN

Peripheral blood mononuclear cells (PBMC) are mixed subpopulations of blood cells composed of five cell types. PBMC are widely used in the study of the immune system, infectious diseases, cancer, and vaccine development. Single-cell transcriptomics (SCT) allows the labeling of cell types by gene expression patterns from biological samples. Classifying cells into cell types and states is essential for single-cell analyses, especially in the classification of diseases and the assessment of therapeutic interventions, and for many secondary analyses. Most of the classification of cell types from SCT data use unsupervised clustering or a combination of unsupervised and supervised methods including manual correction. In this chapter, we describe a protocol that uses supervised machine learning (ML) methods with SCT data for the classification of PBMC cell types in samples representing pathological states. This protocol has three parts: (1) data preprocessing, (2) labeling of reference PBMC SCT datasets and training supervised ML models, and (3) labeling new PBMC datasets from disease samples. This protocol enables building classification models that are of high accuracy and efficiency. Our example focuses on 10× Genomics technology but applies to datasets from other SCT platforms.


Asunto(s)
Leucocitos Mononucleares , Neoplasias , Humanos , Aprendizaje Automático Supervisado , Perfilación de la Expresión Génica/métodos , Genómica
12.
Front Oncol ; 13: 1147590, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035178

RESUMEN

Hereditary cancer syndromes (HCS) account for 5~10% of all cancer diagnosis. Lynch syndrome (LS) is one of the most common HCS, caused by germline mutations in the DNA mismatch repair (MMR) genes. Even with prospective cancer surveillance, LS is associated with up to 50% lifetime risk of colorectal, endometrial, and other cancers. While significant progress has been made in the timely identification of germline pathogenic variant carriers and monitoring and early detection of precancerous lesions, cancer-risk reduction strategies are still centered around endoscopic or surgical removal of neoplastic lesions and susceptible organs. Safe and effective cancer prevention strategies are critically needed to improve the life quality and longevity of LS and other HCS carriers. The era of precision oncology driven by recent technological advances in tumor molecular profiling and a better understanding of genetic risk factors has transformed cancer prevention approaches for at-risk individuals, including LS carriers. MMR deficiency leads to the accumulation of insertion and deletion mutations in microsatellites (MS), which are particularly prone to DNA polymerase slippage during DNA replication. Mutations in coding MS give rise to frameshift peptides (FSP) that are recognized by the immune system as neoantigens. Due to clonal evolution, LS tumors share a set of recurrent and predictable FSP neoantigens in the same and in different LS patients. Cancer vaccines composed of commonly recurring FSP neoantigens selected through prediction algorithms have been clinically evaluated in LS carriers and proven safe and immunogenic. Preclinically analogous FSP vaccines have been shown to elicit FSP-directed immune responses and exert tumor-preventive efficacy in murine models of LS. While the immunopreventive efficacy of "off-the-shelf" vaccines consisting of commonly recurring FSP antigens is currently investigated in LS clinical trials, the feasibility and utility of personalized FSP vaccines with individual HLA-restricted epitopes are being explored for more precise targeting. Here, we discuss recent advances in precision cancer immunoprevention approaches, emerging enabling technologies, research gaps, and implementation barriers toward clinical translation of risk-tailored prevention strategies for LS carriers. We will also discuss the feasibility and practicality of next-generation cancer vaccines that are based on personalized immunogenic epitopes for precision cancer immunoprevention.

13.
J Clin Invest ; 133(5)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36719743

RESUMEN

BackgroundMerkel cell carcinoma (MCC) is an aggressive neuroendocrine (NE) skin cancer caused by severe UV-induced mutations or expression of Merkel cell polyomavirus (MCPyV) large and small T antigens (LT and ST). Despite deep genetic differences between MCPyV-positive and -negative subtypes, current clinical diagnostic markers are indistinguishable, and the expression profile of MCC tumors is, to our knowledge, unexplored.MethodsHere, we leveraged bulk and single-cell RNA-Seq of patient-derived tumor biopsies and cell lines to explore the underlying transcriptional environment of MCC.ResultsStrikingly, MCC samples could be separated into transcriptional subtypes that were independent of MCPyV status. Instead, we observed an inverse correlation between a NE gene signature and the Hippo pathway transcription factors Yes1-associated transcriptional regulator (YAP1) and WW domain-containing transcriptional regulator 1 (WWTR1). This inverse correlation was broadly present at the transcript and protein levels in the tumor biopsies as well as in established and patient-derived cell lines. Mechanistically, expression of YAP1 or WWTR1 in a MCPyV-positive MCC cell line induced cell-cycle arrest at least in part through TEA domain-dependent (TEAD-dependent) transcriptional repression of MCPyV LT.ConclusionThese findings identify what we believe to be a previously unrecognized heterogeneity in NE gene expression within MCC and support a model of YAP1/WWTR1 silencing as essential for the development of MCPyV-positive MCC.FundingUS Public Health Service grants R35CA232128, P01CA203655, and P30CA06516.


Asunto(s)
Carcinoma de Células de Merkel , Poliomavirus de Células de Merkel , Infecciones por Polyomavirus , Neoplasias Cutáneas , Infecciones Tumorales por Virus , Humanos , Carcinoma de Células de Merkel/genética , Carcinoma de Células de Merkel/patología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Poliomavirus de Células de Merkel/genética , Péptidos y Proteínas de Señalización Intracelular , Línea Celular , Infecciones por Polyomavirus/genética , Infecciones Tumorales por Virus/genética , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ
14.
Front Immunol ; 13: 900605, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36268024

RESUMEN

Neuromyelitis optica spectrum disorders (NMOSD) are rare, debilitating autoimmune diseases of the central nervous system. Many NMOSD patients have antibodies to Aquaporin-4 (AQP4). Prior studies show associations of NMOSD with individual Human Leukocyte Antigen (HLA) alleles and with mutations in the complement pathway and potassium channels. HLA allele associations with NMOSD are inconsistent between populations, suggesting complex relationships between the identified alleles and risk of disease. We used a retrospective case-control approach to identify contributing genetic variants in patients who met the diagnostic criteria for NMOSD and their unaffected family members. Potentially deleterious variants identified in NMOSD patients were compared to members of their families who do not have the disease and to existing databases of human genetic variation. HLA sequences from patients from Belgrade, Serbia, were compared to the frequency of HLA haplotypes in the general population in Belgrade. We analyzed exome sequencing on 40 NMOSD patients and identified rare inherited variants in the complement pathway and potassium channel genes. Haplotype analysis further detected two haplotypes, HLA-A*01, B*08, DRB1*03 and HLA-A*01, B*08, C*07, DRB1*03, DQB1*02, which were more prevalent in NMOSD patients than in unaffected individuals. In silico modeling indicates that HLA molecules within these haplotypes are predicted to bind AQP4 at several sites, potentially contributing to the development of autoimmunity. Our results point to possible autoimmune and neurodegenerative mechanisms that cause NMOSD, and can be used to investigate potential NMOSD drug targets.


Asunto(s)
Neuromielitis Óptica , Humanos , Neuromielitis Óptica/genética , Haplotipos , Estudios Retrospectivos , Acuaporina 4/genética , Canales de Potasio/genética , Antígenos HLA/genética
15.
J Clin Invest ; 132(13)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35775490

RESUMEN

Cancers avoid immune surveillance through an array of mechanisms, including perturbation of HLA class I antigen presentation. Merkel cell carcinoma (MCC) is an aggressive, HLA-I-low, neuroendocrine carcinoma of the skin often caused by the Merkel cell polyomavirus (MCPyV). Through the characterization of 11 newly generated MCC patient-derived cell lines, we identified transcriptional suppression of several class I antigen presentation genes. To systematically identify regulators of HLA-I loss in MCC, we performed parallel, genome-scale, gain- and loss-of-function screens in a patient-derived MCPyV-positive cell line and identified MYCL and the non-canonical Polycomb repressive complex 1.1 (PRC1.1) as HLA-I repressors. We observed physical interaction of MYCL with the MCPyV small T viral antigen, supporting a mechanism of virally mediated HLA-I suppression. We further identify the PRC1.1 component USP7 as a pharmacologic target to restore HLA-I expression in MCC.


Asunto(s)
Carcinoma de Células de Merkel , Poliomavirus de Células de Merkel , Infecciones por Polyomavirus , Neoplasias Cutáneas , Antígenos Virales de Tumores/genética , Antígenos Virales de Tumores/metabolismo , Carcinoma de Células de Merkel/genética , Carcinoma de Células de Merkel/patología , Epigénesis Genética , Humanos , Poliomavirus de Células de Merkel/genética , Poliomavirus de Células de Merkel/metabolismo , Infecciones por Polyomavirus/genética , Neoplasias Cutáneas/patología , Peptidasa Específica de Ubiquitina 7/metabolismo
16.
Nature ; 605(7910): 532-538, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35508657

RESUMEN

Within the tumour microenvironment, CD4+ T cells can promote or suppress antitumour responses through the recognition of antigens presented by human leukocyte antigen (HLA) class II molecules1,2, but how cancers co-opt these physiologic processes to achieve immune evasion remains incompletely understood. Here we performed in-depth analysis of the phenotype and tumour specificity of CD4+ T cells infiltrating human melanoma specimens, finding that exhausted cytotoxic CD4+ T cells could be directly induced by melanoma cells through recognition of HLA class II-restricted neoantigens, and also HLA class I-restricted tumour-associated antigens. CD4+ T regulatory (TReg) cells could be indirectly elicited through presentation of tumour antigens via antigen-presenting cells. Notably, numerous tumour-reactive CD4+ TReg clones were stimulated directly by HLA class II-positive melanoma and demonstrated specificity for melanoma neoantigens. This phenomenon was observed in the presence of an extremely high tumour neoantigen load, which we confirmed to be associated with HLA class II positivity through the analysis of 116 melanoma specimens. Our data reveal the landscape of infiltrating CD4+ T cells in melanoma and point to the presentation of HLA class II-restricted neoantigens and direct engagement of immunosuppressive CD4+ TReg cells as a mechanism of immune evasion that is favoured in HLA class II-positive melanoma.


Asunto(s)
Antígenos de Neoplasias , Linfocitos T CD4-Positivos , Melanoma , Neoplasias Cutáneas , Células Presentadoras de Antígenos , Antígenos de Neoplasias/inmunología , Antígenos HLA , Humanos , Melanoma/inmunología , Fenotipo , Neoplasias Cutáneas/inmunología , Células Tumorales Cultivadas , Microambiente Tumoral
17.
Clin Cancer Res ; 28(15): 3356-3366, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35443043

RESUMEN

PURPOSE: Although local tissue-based immune responses are critical for elucidating direct tumor-immune cell interactions, peripheral immune responses are increasingly recognized as occupying an important role in anticancer immunity. We evaluated serial blood samples from patients with advanced epithelial ovarian cancer (EOC) undergoing standard-of-care neoadjuvant carboplatin and paclitaxel chemotherapy (including dexamethasone for prophylaxis of paclitaxel-associated hypersensitivity reactions) to characterize the evolution of the peripheral immune cell function and composition across the course of therapy. EXPERIMENTAL DESIGN: Serial blood samples from 10 patients with advanced high-grade serous ovarian cancer treated with neoadjuvant chemotherapy (NACT) were collected before the initiation of chemotherapy, after the third and sixth cycles, and approximately 2 months after completion of chemotherapy. T-cell function was evaluated using ex vivo IFNγ ELISpot assays, and the dynamics of T-cell repertoire and immune cell composition were assessed using bulk and single-cell RNA sequencing (RNAseq). RESULTS: T cells exhibited an improved response to viral antigens after NACT, which paralleled the decrease in CA125 levels. Single-cell analysis revealed increased numbers of memory T-cell receptor (TCR) clonotypes and increased central memory CD8+ and regulatory T cells throughout chemotherapy. Finally, administration of NACT was associated with increased monocyte frequency and expression of HLA class II and antigen presentation genes; single-cell RNAseq analyses showed that although driven largely by classical monocytes, increased class II gene expression was a feature observed across monocyte subpopulations after chemotherapy. CONCLUSIONS: NACT may alleviate tumor-associated immunosuppression by reducing tumor burden and may enhance antigen processing and presentation. These findings have implications for the successful combinatorial applications of immune checkpoint blockade and therapeutic vaccine approaches in EOC.


Asunto(s)
Terapia Neoadyuvante , Neoplasias Ováricas , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Carcinoma Epitelial de Ovario/patología , Quimioterapia Adyuvante , Femenino , Humanos , Neoplasias Ováricas/patología , Paclitaxel
18.
Nat Biotechnol ; 40(2): 209-217, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34663921

RESUMEN

Tumor-associated epitopes presented on MHC-I that can activate the immune system against cancer cells are typically identified from annotated protein-coding regions of the genome, but whether peptides originating from novel or unannotated open reading frames (nuORFs) can contribute to antitumor immune responses remains unclear. Here we show that peptides originating from nuORFs detected by ribosome profiling of malignant and healthy samples can be displayed on MHC-I of cancer cells, acting as additional sources of cancer antigens. We constructed a high-confidence database of translated nuORFs across tissues (nuORFdb) and used it to detect 3,555 translated nuORFs from MHC-I immunopeptidome mass spectrometry analysis, including peptides that result from somatic mutations in nuORFs of cancer samples as well as tumor-specific nuORFs translated in melanoma, chronic lymphocytic leukemia and glioblastoma. NuORFs are an unexplored pool of MHC-I-presented, tumor-specific peptides with potential as immunotherapy targets.


Asunto(s)
Inmunoterapia , Melanoma , Antígenos de Neoplasias , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Inmunoterapia/métodos , Espectrometría de Masas , Melanoma/genética , Péptidos
19.
STAR Protoc ; 3(4): 101910, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36595954

RESUMEN

Immunopeptidome profiling of infected cells is a powerful technique for detecting viral peptides that are naturally processed and loaded onto class I human leukocyte antigens (HLAs-I). Here, we provide a protocol for preparing samples for immunopeptidome profiling that can inactivate enveloped viruses while still preserving the integrity of the HLA-I complex. We detail steps for lysate preparation of infected cells followed by HLA-I immunoprecipitation and virus inactivation. We further describe peptide purification for mass spectrometry outside a high-containment facility. For complete details on the use and execution of this protocol, please refer to Weingarten-Gabbay et al. (2021).1.


Asunto(s)
Antígenos de Histocompatibilidad Clase I , Virus , Humanos , Péptidos/química , Espectrometría de Masas
20.
Cell Rep ; 37(6): 109992, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34758319

RESUMEN

To elucidate mechanisms by which T cells eliminate leukemia, we study donor lymphocyte infusion (DLI), an established immunotherapy for relapsed leukemia. We model T cell dynamics by integrating longitudinal, multimodal data from 94,517 bone marrow-derived single T cell transcriptomes in addition to chromatin accessibility and single T cell receptor sequencing from patients undergoing DLI. We find that responsive tumors are defined by enrichment of late-differentiated T cells before DLI and rapid, durable expansion of early differentiated T cells after treatment, highly similar to "terminal" and "precursor" exhausted subsets, respectively. Resistance, in contrast, is defined by heterogeneous T cell dysfunction. Surprisingly, early differentiated T cells in responders mainly originate from pre-existing and novel clonotypes recruited to the leukemic microenvironment, rather than the infusion. Our work provides a paradigm for analyzing longitudinal single-cell profiling of scenarios beyond adoptive cell therapy and introduces Symphony, a Bayesian approach to infer regulatory circuitry underlying T cell subsets, with broad relevance to exhaustion antagonists across cancers.


Asunto(s)
Inmunoterapia Adoptiva/métodos , Leucemia/inmunología , Activación de Linfocitos/inmunología , Transfusión de Linfocitos/métodos , Recurrencia Local de Neoplasia/inmunología , Trasplante de Células Madre/métodos , Linfocitos T/inmunología , Evolución Clonal , Humanos , Leucemia/patología , Leucemia/terapia , Estudios Longitudinales , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/terapia , Donantes de Tejidos , Trasplante Homólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...