Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Clin Med ; 10(24)2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34945039

RESUMEN

(1) Background: Recessive Stargardt disease (STGD1) and multifocal pattern dystrophy simulating Stargardt disease ("pseudo-Stargardt pattern dystrophy", PSPD) share phenotypic similitudes, leading to a difficult clinical diagnosis. Our aim was to assess whether a deep learning classifier pretrained on fundus autofluorescence (FAF) images can assist in distinguishing ABCA4-related STGD1 from the PRPH2/RDS-related PSPD and to compare the performance with that of retinal specialists. (2) Methods: We trained a convolutional neural network (CNN) using 729 FAF images from normal patients or patients with inherited retinal diseases (IRDs). Transfer learning was then used to update the weights of a ResNet50V2 used to classify the 370 FAF images into STGD1 and PSPD. Retina specialists evaluated the same dataset. The performance of the CNN and that of retina specialists were compared in terms of accuracy, sensitivity, and precision. (3) Results: The CNN accuracy on the test dataset of 111 images was 0.882. The AUROC was 0.890, the precision was 0.883 and the sensitivity was 0.883. The accuracy for retina experts averaged 0.816, whereas for retina fellows it averaged 0.724. (4) Conclusions: This proof-of-concept study demonstrates that, even with small databases, a pretrained CNN is able to distinguish between STGD1 and PSPD with good accuracy.

2.
Comput Biol Med ; 130: 104198, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33383315

RESUMEN

PURPOSE: To automatically classify retinal atrophy according to its etiology, using fundus autofluorescence (FAF) images, using a deep learning model. METHODS: In this study, FAF images of patients with advanced dry age-related macular degeneration (AMD), also called geographic atrophy (GA), and genetically confirmed inherited retinal diseases (IRDs) in late atrophic stages [Stargardt disease (STGD1) and Pseudo-Stargardt Pattern Dystrophy (PSPD)] were included. The FAF images were used to train a multi-layer deep convolutional neural network (CNN) to differentiate on FAF between atrophy in the context of AMD (GA) and atrophy secondary to IRDs. Three-hundred fourteen FAF images were included, of which 110 images were of GA eyes and 204 were eyes with genetically confirmed STGD1 or PSPD. In the first approach, the CNN was trained and validated with 251 FAF images. Established augmentation techniques were used and an Adam optimizer was used for training. For the subsequent testing, the built classifiers were then tested with 63 untrained FAF images. The visualization method was integrated gradient visualization. In the second approach, 10-fold cross-validation was used to determine the model's performance. RESULTS: In the first approach, the best performance of the model was obtained using 10 epochs, with an accuracy of 0.92 and an area under the curve for Receiver Operating Characteristic (AUC-ROC) of 0.981. Mean accuracy was 87.30 ± 2.96. In the second approach, a mean accuracy of 0.79 ± 0.06 was obtained. CONCLUSION: This study describes the use of a deep learning-based algorithm to automatically classify atrophy on FAF imaging according to its etiology. Accurate differential diagnosis between GA and late-onset IRDs masquerading as GA on FAF can be performed with good accuracy and AUC-ROC values.


Asunto(s)
Aprendizaje Profundo , Atrofia Geográfica , Atrofia , Angiografía con Fluoresceína , Fondo de Ojo , Humanos , Imagen Óptica , Tomografía de Coherencia Óptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...