Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124587, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38850816

RESUMEN

Phosphorylated peptides are instrumental in studying protein phosphorylation events. In the present study, Raman optical activity (ROA) is employed to elucidate the structure of a dipeptide, L-alanyl-L-glutamine (L-Ala-L-Gln) and its two differently alkylated N-phosphorylated derivatives. Theoretical simulations were conducted to aid the interpretation of peptide conformation variations upon phosphorylation, and of the measured Raman and ROA spectra. Induced circularly polarized luminescence (CPL) was also recorded in solution, in the presence of a simple europium aqua ion. As the spectra are peptide specific, this type of stereochemical analysis is expected to aid identification of the phosphorylation sites also in other peptides and possibly proteins.

2.
Small ; 20(26): e2306707, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38247201

RESUMEN

In living organisms, carotenoids are incorporated in biomembranes, remarkably modulating their mechanical characteristics, fluidity, and permeability. Significant resonance enhancement of Raman optical activity (ROA) signals of carotenoid chiral aggregates makes resonance ROA (RROA), a highly selective tool to study exclusively carotenoid assemblies in model membranes. Hence, RROA is combined with electronic circular dichroism (ECD), dynamic light scattering (DLS), molecular dynamics, and quantum-chemical calculations to shed new light on the carotenoid aggregation in dipalmitoylphosphatidylcholine (DPPC) liposomes. Using representative members of the carotenoid family: apolar α-carotene and more polar fucoxanthin and zeaxanthin, the authors demonstrate that the stability of carotenoid aggregates is directly linked with their orientation in membranes and the monomer structures inside the assemblies. In particular, polyene chain distortion of α-carotene molecules is an important feature of J-aggregates that show increased orientational freedom and stability inside liposomes compared to H-assemblies of more polar xanthophylls. In light of these results, RROA emerges as a new tool to study active compounds and drugs embedded in membranes.


Asunto(s)
Carotenoides , Liposomas , Espectrometría Raman , Espectrometría Raman/métodos , Carotenoides/química , Liposomas/química , Simulación de Dinámica Molecular , Dicroismo Circular , 1,2-Dipalmitoilfosfatidilcolina/química , Xantófilas/química
3.
Angew Chem Int Ed Engl ; 62(45): e202312521, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37728178

RESUMEN

Resonance Raman optical activity (RROA) spectra with high sensitivity reveal details on molecular structure, chirality, and excited electronic properties. Despite the difficulty of the measurements, the recorded data for the Co(III) complex with S,S-N,N-ethylenediaminedisuccinic acid are of exceptional quality and, coupled with the theory, spectacularly document the molecular behavior in resonance. This includes a huge enhancement of the chiral scattering, contribution of the antisymmetric polarizabilities to the signal, and the Herzberg-Teller effect significantly shaping the spectra. The chiral component is by about one order of magnitude bigger than for an analogous aluminum complex. The band assignment and intensity profile were confirmed by simulations based on density functional and vibronic theories. The resonance was attributed to the S0 →S3 transition, with the strongest signal enhancement of Raman and ROA spectral bands below about 800 cm-1 . For higher wavenumbers, other excited electronic states contribute to the scattering in a less resonant way. RROA spectroscopy thus appears as a unique tool to study the structure and electronic states of absorbing molecules in analytical chemistry, biology, and material science.

4.
Analyst ; 148(20): 5070-5083, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37668375

RESUMEN

The study demonstrates that a combination of plasmonic nanostructures and artificial receptors can be applied for sensing small molecular species. Gold nanoshells containing magnetic cores are used as the SERS-active substrates, which opens the way for the development of multimodal contrast agents with applicability extended to sensing or for the separation of analytes by magnetic solid-phase extraction. Disubstituted ureas forming hydrogen-bonded complexes with certain anions can be employed as molecular sensors. In this case study, gold nanoshells with silica-coated Mn-Zn ferrite cores were prepared by a multistep procedure. The nanoshells were co-functionalized with an N-(4-mercaptophenyl)-N'-(4-nitrophenyl)urea sensor synthesized directly on the gold surface, and with 4-nitrothiophenol, which is adopted as an internal standard. SERS measurements were carried out with acetonitrile solutions of tetrabutylammonium fluoride (Bu4NF) over a concentration range of 10-10-10-1 mol L-1. The spectral response of the sensor is dependent on the fluoride concentration in the range of 10-5-10-1 mol L-1. To investigate further the SERS mechanism, a model sensor, N-(4-bromophenyl)-N'-(4-nitrophenyl)urea, was synthesized and used in Raman spectroscopy with solutions of Bu4NF, up to a molar ratio of 1 : 20. The spectra and the interactions between the sensors and fluoride anions were also studied by extensive DFT computations.

5.
Chempluschem ; 88(11): e202300219, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37283530

RESUMEN

Glutathione (GSH) is a common antioxidant and its biological activity depends on the conformation and protonation state. We used molecular dynamics, Raman and Raman optical activity (ROA) spectroscopies to investigate GSH structural changes in a broad pH range. Factor analysis of the spectra provided protonation constants (2.05, 3.45, 8.62, 9.41) in good agreement with previously published values. Following the analysis, spectra of differently protonated forms were obtained by extrapolation. The complete deprotonation of the thiol group above pH 11 was clearly visible in the spectra; however, many spectral features did not change much with pH. Experimental spectra at various pH values were decomposed into the simulated ones, which allowed us to study the conformer populations and quality of molecular dynamics (MD). According to this combined ROA/MD analysis conformation of the GSH backbone is affected by the pH changes only in a limited way. The combination of ROA with the computations thus has the potential to improve the MD force field and obtain more accurate populations of the conformer species. The methodology can be used for any molecule, but for a more detailed insight better computational techniques are needed in the future.


Asunto(s)
Simulación de Dinámica Molecular , Espectrometría Raman , Rotación Óptica , Conformación Molecular , Espectrometría Raman/métodos , Glutatión
6.
Phys Chem Chem Phys ; 25(11): 8198-8208, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36880812

RESUMEN

Nucleotide conformational flexibility affects their biological functions. Although the spectroscopy of Raman optical activity (ROA) is well suited to structural analyses in aqueous solutions, the link between the spectral shape and the nucleotide geometry is not fully understood. We recorded the Raman and ROA spectra of model nucleotides (rAMP, rGMP, rCMP, and dTMP) and interpreted them on the basis of molecular dynamics (MD) combined with density functional theory (DFT). The relation between the sugar puckering, base conformation and spectral intensities is discussed. Hydrogen bonds between the sugar's C3' hydroxyl and the phosphate groups were found to be important for the sugar puckering. The simulated spectra correlated well with the experimental data and provided an understanding of the dependence of the spectral shapes on conformational dynamics. Most of the strongest spectral bands could be assigned to vibrational molecular motions. Decomposition of the experimental spectra into calculated subspectra based on arbitrary maps of free energies provided experimental conformer populations, which could be used to verify and improve the MD predictions. The analyses indicate some flaws of common MD force fields, such as being unable to describe the fine conformer distribution. Also the accuracy of conformer populations obtained from the spectroscopic data depends on the simulations, improvement of which is desirable for gaining a more detailed insight in the future. Improvement of the spectroscopic and computational methodology for nucleotides also provides opportunities for its application to larger nucleic acids.


Asunto(s)
Simulación de Dinámica Molecular , Nucleótidos , Rotación Óptica , Espectrometría Raman , Azúcares
7.
Phys Chem Chem Phys ; 24(33): 19722-19733, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35946493

RESUMEN

Vibrational frequencies of modes involving intermolecular motions in liquids are relatively small, in the Raman scattering close to the excitation frequency, and the bands may merge into a diverging uninterpretable signal. Raman optical activity (ROA) spectral shapes in this region, however, are structured more and may better reflect the nature of the studied systems. To understand the origin of the signal and its relation to the molecules, ROA spectra of six chiral neat liquids are recorded and analyzed on the basis of molecular dynamics and density functional theory computations. The theory of Raman scattering of liquids is discussed and adapted for modeling based on clusters and periodic boundary conditions. A plain cluster approach is compared to a crystal-like model. The results show that the low-frequency optical activity can be reliably modeled and related to the structure. However, momentary arrangement of molecules leads to large variations of optical activity, and a relatively large number of geometries need to be averaged for accurate simulations. The intermolecular modes are intertwined with intramolecular ones and start to dominate as the frequency goes down. The low-frequency ROA signal thus reflects the chemical composition and coupled with the modeling it provides a welcome means to study the structure and interactions of chiral liquids.

8.
J Chem Theory Comput ; 18(3): 1780-1787, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35138830

RESUMEN

Within harmonic approximations, molecular vibrational spectra are simulated in a standard way through force field diagonalization and following transformation of Cartesian to normal-mode tensor derivatives. This may become tedious for large systems of many thousands of atoms and also not necessary because of a limited resolution required to interpret an experiment. We developed an algorithm based on the real-time real-field molecular dynamics, effectively at zero temperature, invoked in a molecule by the electromagnetic field of light. The algorithm is simple to implement and suitable for parallel computing, and it can be potentially extended to more complicated molecular-light interaction modes. It circumvents the diagonalization and is suitable to model vibrational optical activity (vibrational circular dichroism and, to a lesser extent, Raman optical activity). For large molecules, it becomes faster than diagonalization, but it also enables the assignment of vibrational spectral bands to local molecular motions.

9.
Phys Chem Chem Phys ; 23(46): 26501-26509, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34806737

RESUMEN

Raman optical activity (ROA) spectral features reliably indicate the structure of peptides and proteins, but the signal is often weak. However, we observed significantly enhanced low-frequency bands for α-helical poly-L-alanine (PLA) in solution. The biggest ROA signal at ∼100 cm-1 is about 10 times stronger than higher-frequency bands described previously, which facilitates the detection. The low-frequency bands of PLA were compared to those of α-helical proteins. For PLA, density functional simulations well reproduced the experimental spectra and revealed that about 12 alanine residues within two turns of the α-helix generate the strong ROA band. Averaging based on molecular dynamics (MD) provided an even more realistic spectrum compared to the static model. The low-frequency bands could be largely related to a collective motion of the α-helical backbone, partially modulated by the solvent. Helical and intermolecular vibrational coordinates have been introduced and the helical unwinding modes were assigned to the strongest ROA signal at 101-128 cm-1. Further analysis indicated that the helically arranged amide and methyl groups are important for the strong chiral signal of PLA, while the local chiral centers CαH contribute in a minor way only. The strong low-frequency ROA can thus provide precious information about the motions of the peptide backbone and facilitate future protein studies.


Asunto(s)
Péptidos/química , Simulación de Dinámica Molecular , Rotación Óptica , Conformación Proteica en Hélice alfa , Espectrometría Raman
10.
Phys Chem Chem Phys ; 23(31): 16635-16645, 2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34323256

RESUMEN

α-Synuclein is a neuronal protein which adopts multiple conformations. These can be conveniently studied by the spectroscopy of vibrational optical activity (VOA). However, the interpretation of VOA spectra based on quantum-chemical simulations is difficult. To overcome the hampering of the computations by the protein size, we used the Cartesian tensor transfer technique to investigate links between the spectral shapes and protein structure. Vibrational circular dichroism (VCD) and Raman optical activity (ROA) spectra of α-synuclein in disordered, α-helical and ß-sheet (fibril) forms were measured and analyzed on the basis of molecular dynamics and density functional theory computations. For the disordered and α-helical conformers, a high fidelity of the simulated spectra with a reasonable computational cost was achieved. Most experimental spectral features could be assigned to the structure. So far unreported ROA marker bands of the secondary structure were found for the lower-frequency and CH stretching vibrations. Fibril VCD spectra were simulated with a rigid periodic model of the geometry and the results are consistent with previous studies based on cryogenic electron microscopy. The fibrils also give a specific ROA signal, but unlike VCD it is currently not fully explicable by the simulations. In connection with the computational modeling the VOA spectroscopy thus appears as an extremely useful tool for monitoring α-synuclein and other proteins in solutions.


Asunto(s)
Simulación de Dinámica Molecular , alfa-Sinucleína/química , Dicroismo Circular , Teoría Funcional de la Densidad , Rotación Óptica , Espectrometría Raman , Vibración
11.
Chemphyschem ; 22(1): 83-91, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33080105

RESUMEN

Amyloidal protein fibrils occur in many biological events, but their formation and structural variability are understood rather poorly. We systematically explore fibril polymorphism for polyglutamic acid (PGA), insulin and hen egg white lysozyme. The fibrils were grown in the presence of "seeds", that is fibrils of the same or different protein. The seeds in concentrations higher than about 5 % of the total protein amount fully determined the structure of the final fibrils. Fibril structure was monitored by vibrational circular dichroism (VCD) spectroscopy and other techniques. The VCD shapes significantly differ for different fibril samples. Infrared (IR) and VCD spectra of PGA were also simulated using density functional theory (DFT) and a periodic model. The simulation provides excellent basis for data interpretation and reveals that the spectral shapes and signs depend both on fibril length and twist. The understanding of fibril formation and interactions may facilitate medical treatment of protein misfolding diseases in the future.


Asunto(s)
Amiloide/síntesis química , Insulina/química , Muramidasa/química , Ácido Poliglutámico/química , Amiloide/análisis , Catálisis , Dicroismo Circular , Teoría Funcional de la Densidad , Muramidasa/metabolismo , Conformación Proteica , Vibración
12.
Angew Chem Int Ed Engl ; 59(49): 21895-21898, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32926516

RESUMEN

Previously, we and other laboratories have reported an unusual and strong Raman optical activity (ROA) induced in solvents by chiral dyes. Various theories of the phenomenon appeared, but they were not capable of explaining fully the observed ROA band signs and intensities. In this work, an analysis based both on the light scattering theory and dedicated experiments provides a more complete understanding. For example, double-cell magnetic circular dichroism and magnetic ROA experiments with copper-porphyrin complex show that the induced chirality is observed without any contact of the solvents with the complex. The results thus indicate that a combination of electronic circular dichroism (ECD) with the polarized Raman scattering is responsible for the effect. The degree of circularity of solvent vibrational bands is a principal molecular property participating in the event. The insight and the possibility to predict the chirality transfer promise future applications in spectroscopy, chemical analysis and polarized imaging.

13.
Chempluschem ; 85(3): 561-575, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32187832

RESUMEN

Chiroptical spectroscopy exploring the interaction of matter with polarized light provides many tools for molecular structure and interaction studies. Here, some recent discoveries are reviewed, primarily in the field of vibrational optical activity. Technological advances results in the development of more sensitive vibrational circular dichroism (VCD), Raman optical activity (ROA) or circular polarized luminescence (CPL) spectrometers. Significant contributions to the field also come from the light scattering and electronic structure theories, and their implementation in computer systems. Finally, new chiroptical phenomena have been observed, such as enhanced circular dichroism of biopolymers (protein fibrils, nucleic acids), plasmonic and resonance chirality-transfer ROA experiments. Some of them are not yet understood or attributed to instrumental artifacts so far. Nevertheless, these unknown territories also indicate the vast potential of the chiroptical spectroscopy, and their investigation is even more challenging.

14.
Angew Chem Int Ed Engl ; 58(46): 16495-16498, 2019 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-31460686

RESUMEN

We report extremely strong chirality transfer from a chiral nickel complex to solvent molecules detected as Raman optical activity (ROA). Electronic energies of the complex were in resonance with the excitation-laser light. The phenomenon was observed for a wide range of achiral and chiral solvents. For chiral 2-butanol, the induced ROA was even stronger than the natural one. The observations were related to so-called quantum (molecular) plasmons that enable a strong chiral Rayleigh scattering of the resonating complex. According to a model presented here, the maximal induced ROA intensity occurs at a certain distance from the solute, in a three-dimensional "ring of fire", even after rotational averaging. Most experimental ROA signs and relative intensities could be reproduced. The effect might significantly increase the potential of ROA spectroscopy in bioimaging and sensitive detection of chiral molecules.

15.
Chem Asian J ; 13(24): 3865-3870, 2018 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-30335221

RESUMEN

Identification of saccharides is difficult due to their similar chemical structure. However, they interact very selectively with lanthanide probes. To explore the potential for saccharide recognition, we compare circularly polarized luminescence induced by a variety of oligo- and polysaccharides in three europium compounds. Measurement on a standard Raman optical activity spectrometer made it possible to use high excitation powers and provided very distinct spectral patterns, which were sensitive both to the local structure and differences in molecular size. For example, α-, ß- and γ-cyclodextrins provided unique spectroscopic responses. Titration data and molecular dynamics simulation confirmed that CPL spectra carry information about the binding mode and strength between the lanthanide probe and saccharide skeleton.

16.
Phys Chem Chem Phys ; 20(26): 18038-18046, 2018 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-29932184

RESUMEN

Biomolecular aggregation is omnipresent in nature and important for metabolic processes or in medical treatment; however, the phenomenon is rather difficult to predict or understand on the basis of computational models. Recently, we found that electronic circular dichroism (ECD) spectroscopy and closely related resonance Raman optical activity (RROA) are extremely sensitive to the aggregation mechanism and structure of the astaxanthin dye. In the present study, molecular dynamics (MD) and quantum chemical (QC) computations (ZIndo/S, TDDFT) are used to link the aggregate structure with ECD spectral shapes. Realistic absorption and ECD intensities were obtained and the simulations reproduced many trends observed experimentally, such as the prevalent sign pattern and dependence of the aggregate structure on the solvent type. The computationally cheaper ZIndo/S method provided results very similar to those obtained by TDDFT. In the future, the accuracy of the combined MD/QC methodology of spectra interpretation should be improved to provide more detailed information on astaxanthin aggregates and similar macromolecular systems.


Asunto(s)
Dicroismo Circular/métodos , Simulación de Dinámica Molecular , Dimerización , Estructura Molecular , Teoría Cuántica , Espectrometría Raman/métodos , Xantófilas/química
17.
Phys Chem Chem Phys ; 20(7): 4926-4935, 2018 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-29384537

RESUMEN

Vibrational circular dichroism (VCD) spectroscopy is an excellent method to determine the secondary structure of proteins in solution. Comparison of experimental spectra with quantum-chemical simulations represents a convenient and objective way to extract information on the structure. This has been difficult for such large molecules where approximate theoretical models have to be used. In the present study we applied the Cartesian-coordinate based tensor transfer (CCT) making it possible to extend the density functional theory (DFT) and model spectral intensities of large globular proteins nearly at quantum-chemical precision. Indeed, comparison with experiment provided a better understanding of the dependence of VCD spectral shapes on the geometry, their sensitivity to fine structural details and interactions with the environment. On a model set of globular proteins the simulated spectra correlated well with experimental data and revealed which structural information can (and cannot) be obtained from this kind of spectroscopy. Although the VCD technique has been regarded as being rather insensitive to side-chain variations, we found that the spectra of human and hen lysozyme differing by a few amino acids only are quite distinct. This has been explained by long-distance coupling of the amide vibrations. Likewise, the modeling reproduced some spectral changes caused by protein deuteration even when the protein structure was conserved.


Asunto(s)
Modelos Moleculares , Muramidasa/química , Proteínas/química , Amidas/química , Secuencia de Aminoácidos , Animales , Pollos , Dicroismo Circular , Femenino , Humanos , Estructura Secundaria de Proteína , Vibración
18.
Carbohydr Res ; 451: 42-50, 2017 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-28950209

RESUMEN

Conformational preferences of two C-glycosyl analogues of Manp-(1 â†’ 3)-Manp, were studied using a combined method of theoretical and experimental chemistry. Molecular dynamics was utilized to provide conformational behavior along C-glycosidic bonds of methyl 3-deoxy-3-C-[(α-d-mannopyranosyl)methyl]-α-d- and l-mannopyranosides. The OPLS2005 and Glycam06 force fields were used. Simulations were performed with explicit water (TIP3P) and methanol. Results were compared with a complete conformational scan at the MM4 level with the dielectric constant corresponding to methanol. In order to verify predicted conformational preferences, vicinal 3JHH NMR coupling constants were calculated by the Karplus equation on simulated potential energy surfaces (PES). A set of new parameters for the Karplus equation was also designed. Predicted 3JHH were compared with experimental data. We also used reverse methodology, in which the 3JHH coupling constants were calculated at the DFT level for each family of (ϕ, ψ)-conformers separately and then experimental values were decomposed onto calculated 3JHH couplings in order to obtain experimentally derived populations of conformers. As an alternative method of evaluation of preferred conformers, analysis of sensitive 13C chemical shifts was introduced. We were able to thoroughly discuss several fundamental issues in predictions of preferred conformers of C-saccharides, such as the solvent effect, reliability of the force field, character of empirical Karplus equation or applicability of NMR parameters in predictions of conformational preferences in general.


Asunto(s)
Disacáridos/química , Glicósidos/química , Manósidos/química , Espectroscopía de Resonancia Magnética , Conformación Molecular , Simulación de Dinámica Molecular
19.
Phys Chem Chem Phys ; 19(21): 13614-13621, 2017 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-28524190

RESUMEN

Folding of proteins into insoluble amyloidal fibrils is implicated in a number of biological processes. Optical spectroscopy represents a convenient tool to monitor such structural variations. Recently, characteristic changes in Raman optical activity (ROA) spectra of insulin during a pre-fibrillar stage were reported but not supported by a theoretical model. In the present study, molecular dynamics and the density functional theory are used to simulate the spectra and understand the connection between the structure, and ROA and Raman spectral intensities. Theoretical results are consistent with the observations and only confirm exceptional ROA sensitivity to the protein tertiary structure. Surprisingly, this sensitivity reflects local conformational changes in the peptide main and side chains, rather than a direct through-space interaction of the protein components. Side chains providing strong ROA signals, such as tyrosine, can additionally report on local conformational features. Theoretical modeling helps in explaining the observed spectral changes and is likely to enable future applications of ROA spectroscopy in protein structural studies.


Asunto(s)
Amiloide/química , Insulina/química , Aminoácidos Aromáticos/química , Modelos Químicos , Simulación de Dinámica Molecular , Conformación Proteica en Lámina beta , Espectrometría Raman
20.
Phys Chem Chem Phys ; 18(34): 23803-11, 2016 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-27523964

RESUMEN

Chiroptical spectroscopy of lanthanides sensitively reflects their environment and finds various applications including probing protein structures. However, the measurement is often hampered by instrumental detection limits. In the present study circularly polarized luminescence (CPL) of a europium complex induced by amino acids is monitored by Raman optical activity (ROA) spectroscopy, which enables us to detect weak CPL bands invisible to conventional CPL spectrometers. In detail, the spectroscopic response to the protonation state could be studied, e.g. histidine at pH = 2 showed an opposite sign of the strongest CPL band in contrast to that at pH = 7. The spectra were interpreted qualitatively on the basis of the ligand-field theory and related to CPL induced by an external magnetic field. Free energy profiles obtained by molecular dynamic simulations for differently charged alanine and histidine forms are in qualitative agreement with the spectroscopic data. The sensitivity and specificity of the detection promise future applications in probing peptide and protein side chains, chemical imaging and medical diagnosis. This potential is observed for human milk and hen egg-white lysozymes; these proteins have a similar structure, but very different induced CPL spectra.


Asunto(s)
Aminoácidos/química , Complejos de Coordinación/química , Muramidasa/química , Animales , Quelantes/química , Pollos , Dicroismo Circular , Complejos de Coordinación/síntesis química , Europio/química , Humanos , Magnetismo , Leche Humana/metabolismo , Conformación Molecular , Muramidasa/metabolismo , Espectrometría Raman , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...