Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 48(21): 12169-12187, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33166393

RESUMEN

The highly conserved Tof1/Timeless proteins minimise replication stress and promote normal DNA replication. They are required to mediate the DNA replication checkpoint (DRC), the stable pausing of forks at protein fork blocks, the coupling of DNA helicase and polymerase functions during replication stress (RS) and the preferential resolution of DNA topological stress ahead of the fork. Here we demonstrate that the roles of the Saccharomyces cerevisiae Timeless protein Tof1 in DRC signalling and resolution of DNA topological stress require distinct N and C terminal regions of the protein, whereas the other functions of Tof1 are closely linked to the stable interaction between Tof1 and its constitutive binding partner Csm3/Tipin. By separating the role of Tof1 in DRC from fork stabilisation and coupling, we show that Tof1 has distinct activities in checkpoint activation and replisome stability to ensure the viable completion of DNA replication following replication stress.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Puntos de Control del Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Mutación , Plásmidos/química , Plásmidos/metabolismo , Unión Proteica , Dominios Proteicos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Mol Cell ; 78(4): 739-751.e8, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32259483

RESUMEN

DNA topological stress inhibits DNA replication fork (RF) progression and contributes to DNA replication stress. In Saccharomyces cerevisiae, we demonstrate that centromeric DNA and the rDNA array are especially vulnerable to DNA topological stress during replication. The activity of the SMC complexes cohesin and condensin are linked to both the generation and repair of DNA topological-stress-linked damage in these regions. At cohesin-enriched centromeres, cohesin activity causes the accumulation of DNA damage, RF rotation, and pre-catenation, confirming that cohesin-dependent DNA topological stress impacts on normal replication progression. In contrast, at the rDNA, cohesin and condensin activity inhibit the repair of damage caused by DNA topological stress. We propose that, as well as generally acting to ensure faithful genetic inheritance, SMCs can disrupt genome stability by trapping DNA topological stress.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Fúngicos , Daño del ADN , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Proteínas de Unión al ADN/genética , Complejos Multiproteicos/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Cohesinas
3.
J Cell Sci ; 132(6)2019 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-30674555

RESUMEN

Replication stress is a common feature of cancer cells, and thus a potentially important therapeutic target. Here, we show that cyclin-dependent kinase (CDK)-induced replication stress, resulting from Wee1 inactivation, is synthetic lethal with mutations disrupting dNTP homeostasis in fission yeast. Wee1 inactivation leads to increased dNTP demand and replication stress through CDK-induced firing of dormant replication origins. Subsequent dNTP depletion leads to inefficient DNA replication, DNA damage and to genome instability. Cells respond to this replication stress by increasing dNTP supply through histone methyltransferase Set2-dependent MBF-induced expression of Cdc22, the catalytic subunit of ribonucleotide reductase (RNR). Disrupting dNTP synthesis following Wee1 inactivation, through abrogating Set2-dependent H3K36 tri-methylation or DNA integrity checkpoint inactivation results in critically low dNTP levels, replication collapse and cell death, which can be rescued by increasing dNTP levels. These findings support a 'dNTP supply and demand' model in which maintaining dNTP homeostasis is essential to prevent replication catastrophe in response to CDK-induced replication stress.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Nucleótidos/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Puntos de Control del Ciclo Celular , Daño del ADN , Replicación del ADN , Código de Histonas , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Homeostasis , Metilación , Schizosaccharomyces/metabolismo , Mutaciones Letales Sintéticas , Factores de Transcripción/metabolismo
4.
Methods Mol Biol ; 1672: 239-259, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29043629

RESUMEN

Mapping the usage of replicative DNA polymerases has previously proved to be technically challenging. By exploiting mutant polymerases that incorporate ribonucleotides into the DNA with a significantly higher proficiency than their wild-type counterparts, we and others have developed methods that can identify what proportion of each DNA strand (i.e., the Watson and Crick strands) is replicated by a specific DNA polymerase. The incorporation of excess ribonucleotides by a mutated polymerase effectively marks, in each individual cells, the DNA strand that is replicated by that specific mutated polymerase. Changes to DNA polymerase usage can be examined at specific loci by Southern blot analysis while a global analysis of polymerase usage can be achieved by applying next-generation sequencing. This genome-wide data also provides a direct measure of replication origin efficiency and can be used to indirectly calculate replication timing.


Asunto(s)
Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Ribonucleótidos , Biología Computacional/métodos , División del ADN , ADN de Hongos , Genoma Fúngico , Secuenciación de Nucleótidos de Alto Rendimiento , Origen de Réplica , Saccharomyces cerevisiae/genética , Programas Informáticos
5.
Cell Rep ; 20(11): 2693-2705, 2017 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-28903048

RESUMEN

Chromatin modification through histone H3 lysine 36 methylation by the SETD2 tumor suppressor plays a key role in maintaining genome stability. Here, we describe a role for Set2-dependent H3K36 methylation in facilitating DNA replication and the transcriptional responses to both replication stress and DNA damage through promoting MluI cell-cycle box (MCB) binding factor (MBF)-complex-dependent transcription in fission yeast. Set2 loss leads to reduced MBF-dependent ribonucleotide reductase (RNR) expression, reduced deoxyribonucleoside triphosphate (dNTP) synthesis, altered replication origin firing, and a checkpoint-dependent S-phase delay. Accordingly, prolonged S phase in the absence of Set2 is suppressed by increasing dNTP synthesis. Furthermore, H3K36 is di- and tri-methylated at these MBF gene promoters, and Set2 loss leads to reduced MBF binding and transcription in response to genotoxic stress. Together, these findings provide new insights into how H3K36 methylation facilitates DNA replication and promotes genotoxic stress responses in fission yeast.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Replicación del ADN , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , Schizosaccharomyces/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Puntos de Control del Ciclo Celular/genética , Daño del ADN/genética , Replicación del ADN/genética , ADN de Hongos/metabolismo , Regulación hacia Abajo/genética , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Mutación/genética , Nucleótidos/metabolismo , Origen de Réplica/genética , Fase S/genética
6.
Genes (Basel) ; 7(12)2016 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-28009828

RESUMEN

The faithful replication of sister chromatids is essential for genomic integrity in every cell division. The replication machinery must overcome numerous difficulties in every round of replication, including DNA topological stress. Topological stress arises due to the double-stranded helical nature of DNA. When the strands are pulled apart for replication to occur, the intertwining of the double helix must also be resolved or topological stress will arise. This intrinsic problem is exacerbated by specific chromosomal contexts encountered during DNA replication. The convergence of two replicons during termination, the presence of stable protein-DNA complexes and active transcription can all lead to topological stresses being imposed upon DNA replication. Here we describe how replication forks respond to topological stress by replication fork rotation and fork reversal. We also discuss the genomic contexts where topological stress is likely to occur in eukaryotes, focusing on the contribution of transcription. Finally, we describe how topological stress, and the ways forks respond to it, may contribute to genomic instability in cells.

7.
Nucleic Acids Res ; 44(9): 4222-32, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27085808

RESUMEN

Genome sequence compositions and epigenetic organizations are correlated extensively across multiple length scales. Replication dynamics, in particular, is highly correlated with GC content. We combine genome-wide time of replication (ToR) data, topological domains maps and detailed functional epigenetic annotations to study the correlations between replication timing and GC content at multiple scales. We find that the decrease in genomic GC content at large scale late replicating regions can be explained by mutation bias favoring A/T nucleotide, without selection or biased gene conversion. Quantification of the free dNTP pool during the cell cycle is consistent with a mechanism involving replication-coupled mutation spectrum that favors AT nucleotides at late S-phase. We suggest that mammalian GC content composition is shaped by independent forces, globally modulating mutation bias and locally selecting on functional element. Deconvoluting these forces and analyzing them on their native scales is important for proper characterization of complex genomic correlations.


Asunto(s)
Replicación del ADN , Composición de Base , Línea Celular Tumoral , Cromatina/genética , Evolución Molecular , Genoma Humano , Humanos , Mutación
8.
Nat Protoc ; 10(11): 1786-801, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26492137

RESUMEN

Ribonucleotides are frequently misincorporated into DNA during replication, and they are rapidly repaired by ribonucleotide excision repair (RER). Although ribonucleotides in template DNA perturb replicative polymerases and can be considered as DNA damage, they also serve positive biological functions, including directing the orientation of mismatch repair. Here we describe a method for ribonucleotide identification by high-throughput sequencing that allows mapping of the location of ribonucleotides across the genome. When combined with specific mutations in the replicative polymerases that incorporate ribonucleotides at elevated frequencies, our ribonucleotide identification method was adapted to map polymerase usage across the genome. Polymerase usage sequencing (Pu-seq) has been used to define, in unprecedented detail, replication dynamics in yeasts. Although other methods that examine replication dynamics provide direct measures of replication timing and indirect estimates of origin efficiency, Pu-seq directly ascertains origin efficiency. The Pu-seq protocol can be completed in 12-14 d.


Asunto(s)
ADN Polimerasa Dirigida por ADN/metabolismo , ADN/química , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Ribonucleótidos/análisis , Replicación del ADN
9.
Nat Struct Mol Biol ; 22(11): 932-8, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26436826

RESUMEN

To maintain genetic stability, DNA must be replicated only once per cell cycle, and replication must be completed even when individual replication forks are inactivated. Because fork inactivation is common, passive convergence of an adjacent fork is insufficient to rescue all inactive forks. Thus, eukaryotic cells have evolved homologous recombination-dependent mechanisms to restart persistent inactive forks. Completing DNA synthesis via homologous recombination-restarted replication (HoRReR) ensures cell survival, but at a cost. One such cost is increased mutagenesis because HoRReR is more error prone than canonical replication. This increased error rate implies the HoRReR mechanism is distinct from that of a canonical fork. Here we demonstrate, in Schizosaccharomyces pombe, that a DNA sequence duplicated by HoRReR during S phase is replicated semiconservatively, but both the leading and lagging strands are synthesized by DNA polymerase δ.


Asunto(s)
ADN Polimerasa III/metabolismo , Replicación del ADN , Recombinación Homóloga , Schizosaccharomyces/enzimología , División Celular , Schizosaccharomyces/genética , Schizosaccharomyces/fisiología
10.
Nat Struct Mol Biol ; 22(3): 192-198, 2015 03.
Artículo en Inglés | MEDLINE | ID: mdl-25664722

RESUMEN

Three eukaryotic DNA polymerases are essential for genome replication. Polymerase (Pol) α-primase initiates each synthesis event and is rapidly replaced by processive DNA polymerases: Polɛ replicates the leading strand, whereas Polδ performs lagging-strand synthesis. However, it is not known whether this division of labor is maintained across the whole genome or how uniform it is within single replicons. Using Schizosaccharomyces pombe, we have developed a polymerase usage sequencing (Pu-seq) strategy to map polymerase usage genome wide. Pu-seq provides direct replication-origin location and efficiency data and indirect estimates of replication timing. We confirm that the division of labor is broadly maintained across an entire genome. However, our data suggest a subtle variability in the usage of the two polymerases within individual replicons. We propose that this results from occasional leading-strand initiation by Polδ followed by exchange for Polɛ.


Asunto(s)
ADN Polimerasa III/fisiología , ADN Polimerasa II/fisiología , ADN Polimerasa I/fisiología , Replicación del ADN/fisiología , Modelos Genéticos , Schizosaccharomyces/genética , ADN/química , Origen de Réplica
11.
EMBO J ; 31(4): 883-94, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22234185

RESUMEN

Intracellular deoxyribonucleoside triphosphate (dNTP) pools must be tightly regulated to preserve genome integrity. Indeed, alterations in dNTP pools are associated with increased mutagenesis, genomic instability and tumourigenesis. However, the mechanisms by which altered or imbalanced dNTP pools affect DNA synthesis remain poorly understood. Here, we show that changes in intracellular dNTP levels affect replication dynamics in budding yeast in different ways. Upregulation of the activity of ribonucleotide reductase (RNR) increases elongation, indicating that dNTP pools are limiting for normal DNA replication. In contrast, inhibition of RNR activity with hydroxyurea (HU) induces a sharp transition to a slow-replication mode within minutes after S-phase entry. Upregulation of RNR activity delays this transition and modulates both fork speed and origin usage under replication stress. Interestingly, we also observed that chromosomal instability (CIN) mutants have increased dNTP pools and show enhanced DNA synthesis in the presence of HU. Since upregulation of RNR promotes fork progression in the presence of DNA lesions, we propose that CIN mutants adapt to chronic replication stress by upregulating dNTP pools.


Asunto(s)
Replicación del ADN , Desoxirribonucleósidos/metabolismo , Origen de Réplica , Saccharomyces cerevisiae/genética , Bromodesoxiuridina , Daño del ADN , ADN de Hongos/biosíntesis , ADN de Hongos/genética , Hidroxiurea/farmacología , Inmunoprecipitación , Ribonucleótido Reductasas/metabolismo , Fase S , Saccharomyces cerevisiae/enzimología
12.
EMBO J ; 31(4): 895-907, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22234187

RESUMEN

The integrity of the genome depends on diverse pathways that regulate DNA metabolism. Defects in these pathways result in genome instability, a hallmark of cancer. Deletion of ELG1 in budding yeast, when combined with hypomorphic alleles of PCNA results in spontaneous DNA damage during S phase that elicits upregulation of ribonucleotide reductase (RNR) activity. Increased RNR activity leads to a dramatic expansion of deoxyribonucleotide (dNTP) pools in G1 that allows cells to synthesize significant fractions of the genome in the presence of hydroxyurea in the subsequent S phase. Consistent with the recognized correlation between dNTP levels and spontaneous mutation, compromising ELG1 and PCNA results in a significant increase in mutation rates. Deletion of distinct genome stability genes RAD54, RAD55, and TSA1 also results in increased dNTP levels and mutagenesis, suggesting that this is a general phenomenon. Together, our data point to a vicious circle in which mutations in gatekeeper genes give rise to genomic instability during S phase, inducing expansion of the dNTP pool, which in turn results in high levels of spontaneous mutagenesis.


Asunto(s)
Replicación del ADN , Desoxirribonucleósidos/metabolismo , Mutagénesis , Saccharomyces cerevisiae/metabolismo , Daño del ADN , Replicación del ADN/efectos de los fármacos , Hidroxiurea/farmacología , Fenotipo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
PLoS Biol ; 9(2): e1000594, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21347245

RESUMEN

DNA must be synthesized for purposes of genome duplication and DNA repair. While the former is a highly accurate process, short-patch synthesis associated with repair of DNA damage is often error-prone. Break-induced replication (BIR) is a unique cellular process that mimics normal DNA replication in its processivity, rate, and capacity to duplicate hundreds of kilobases, but is initiated at double-strand breaks (DSBs) rather than at replication origins. Here we employed a series of frameshift reporters to measure mutagenesis associated with BIR in Saccharomyces cerevisiae. We demonstrate that BIR DNA synthesis is intrinsically inaccurate over the entire path of the replication fork, as the rate of frameshift mutagenesis during BIR is up to 2,800-fold higher than during normal replication. Importantly, this high rate of mutagenesis was observed not only close to the DSB where BIR is less stable, but also far from the DSB where the BIR replication fork is fast and stabilized. We established that polymerase proofreading and mismatch repair correct BIR errors. Also, dNTP levels were elevated during BIR, and this contributed to BIR-related mutagenesis. We propose that a high level of DNA polymerase errors that is not fully compensated by error-correction mechanisms is largely responsible for mutagenesis during BIR, with Pol δ generating many of the mutagenic errors. We further postulate that activation of BIR in eukaryotic cells may significantly contribute to accumulation of mutations that fuel cancer and evolution.


Asunto(s)
Roturas del ADN , Replicación del ADN/fisiología , Saccharomyces cerevisiae/genética , Secuencia de Bases , Reparación de la Incompatibilidad de ADN , Reparación del ADN , ADN Polimerasa Dirigida por ADN/fisiología , Desoxirribonucleótidos/metabolismo , Mutación del Sistema de Lectura , Datos de Secuencia Molecular , Mutagénesis
14.
Microbiol Res ; 163(3): 267-76, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18387285

RESUMEN

The basidiomycetous yeast, Filobasidium capsuligenum, produces killer toxin against the opportunistic pathogen Cryptococcus neoformans. Not every strain isolated so far is able to produce the anti cryptococcal toxin. The aim of the present work was to study the relationship between the toxins and the toxin-producing and non-producing isolates. The toxin was coded on chromosomal DNA in each producing strain as molecular analysis revealed. In addition, both the killing spectra and biochemical properties of the toxins proved to be identical, thus intraspecific variation in the toxin was not found. For molecular typing of the isolates, the D1/D2 region of 26S rDNA, partial sequences of internal transcribed spacer (ITS) regions, PCR fingerprinting RAPD and mtDNA-RFLP patterns were examinated. Phylogenetic analyses based on the different approaches showed that strains with the ability of killer-toxin production and those without it differ significantly and cluster into two distinct groups. The differences between the two groups and the similarity within them suggest the authority to separate the species into varieties.


Asunto(s)
Basidiomycota/fisiología , Proteínas Fúngicas/metabolismo , Proteínas/metabolismo , Basidiomycota/clasificación , Basidiomycota/genética , Cromosomas Fúngicos , Análisis por Conglomerados , Cryptococcus neoformans/efectos de los fármacos , Dermatoglifia del ADN , ADN de Hongos/química , ADN de Hongos/genética , ADN Mitocondrial/genética , ADN Ribosómico/química , ADN Ribosómico/genética , ADN Espaciador Ribosómico/genética , Genes Fúngicos , Genotipo , Factores Asesinos de Levadura , Datos de Secuencia Molecular , Técnicas de Tipificación Micológica , Filogenia , Polimorfismo de Longitud del Fragmento de Restricción , Proteínas/genética , Proteínas/toxicidad , ARN Ribosómico/genética , Técnica del ADN Polimorfo Amplificado Aleatorio
15.
FEMS Microbiol Lett ; 281(1): 51-7, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18318841

RESUMEN

To understand the differences in the organization of mitochondrial genomes of the very closely related Aspergillus niger and Aspergillus tubingensis species, we determined the complete genome sequence of the 1a mtDNA type of A. niger and 2b mtDNA type of A. tubingensis and now we provide a comparative analysis of the two mtDNAs. We found that (1) the organization (gene content and order) of the two genomes is almost identical and (2) the size difference between them is principally attributed to the different intron content of their cox1, atp9 and ndh4L genes.


Asunto(s)
Aspergillus/genética , ADN de Hongos/genética , ADN Mitocondrial/genética , Genoma Mitocondrial , ADN de Hongos/química , ADN Mitocondrial/química , Orden Génico , Intrones , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Sintenía
16.
Antonie Van Leeuwenhoek ; 88(3-4): 249-55, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16284931

RESUMEN

The organization of the mitochondrial genomes in two strains belonging in different varieties of Cryptococcus neoformans was analysed. Physical maps of the mtDNA of the IFM5844 (var. neoformans) and IFO410 (var. grubii) strains were constructed by using EcoRI and EcoRV restriction enzymes; functional maps were constructed by hybridization, cloning and sequencing. Most of the genes important in the mitochondrial function (ND1, ND2, ND3, ND4, ND4L, ND5, ND6, ATP6, ATP9, COX1, COX2 and COB) and protein synthesis (SsrRNA and LsrRNA) were localized. We did not find any differences between the strains in the order of these genes. However, they differed significantly in the sizes of the mtDNAs: 32.6 kb for IFM5844, and 24.1 kb for IFO410. This can be attributed to two large regions of the mtDNA. In these regions, differences were found in the numbers of introns in COX1 (no intron in var. grubii, 5 introns in var. neoformans), COB (1 intron in var. grubii, 2 introns in var. neoformans), LsrRNA (no intron in var. grubii, 2 introns in var. neoformans), and ND5 (no intron in var. grubii, 1 intron in var. neoformans) genes. In several introns of the COB and COX1 genes LAGLIDADG motifs were found. Differences were also observed in the nucleotide sequences of some genes and in the sizes and sequences of intergenic regions. The nucleotide sequences of the genes of the IFM and IFO strains were compared with those of the H-99 and JEC 21 strains from the database. Surprisingly high similarities were found between the strains belonging in var. grubii (IFO 410 and H-99) and var. neoformans (IFM 5844 and JEC 21).


Asunto(s)
Cryptococcus neoformans/genética , ADN Mitocondrial/genética , Genes Fúngicos , Mitocondrias/genética , Polimorfismo Genético , Clonación Molecular , ADN de Hongos/genética , ADN Intergénico , Desoxirribonucleasa EcoRI/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Orden Génico , Intrones , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Mapeo Restrictivo , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...