Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Allergy Clin Immunol ; 147(1): 144-157, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32442646

RESUMEN

BACKGROUND: Asthma is a complex disease with multiple phenotypes that may differ in disease pathobiology and treatment response. IL33 single nucleotide polymorphisms (SNPs) have been reproducibly associated with asthma. IL33 levels are elevated in sputum and bronchial biopsies of patients with asthma. The functional consequences of IL33 asthma SNPs remain unknown. OBJECTIVE: This study sought to determine whether IL33 SNPs associate with asthma-related phenotypes and with IL33 expression in lung or bronchial epithelium. This study investigated the effect of increased IL33 expression on human bronchial epithelial cell (HBEC) function. METHODS: Association between IL33 SNPs (Chr9: 5,815,786-6,657,983) and asthma phenotypes (Lifelines/DAG [Dutch Asthma GWAS]/GASP [Genetics of Asthma Severity & Phenotypes] cohorts) and between SNPs and expression (lung tissue, bronchial brushes, HBECs) was done using regression modeling. Lentiviral overexpression was used to study IL33 effects on HBECs. RESULTS: We found that 161 SNPs spanning the IL33 region associated with 1 or more asthma phenotypes after correction for multiple testing. We report a main independent signal tagged by rs992969 associating with blood eosinophil levels, asthma, and eosinophilic asthma. A second, independent signal tagged by rs4008366 presented modest association with eosinophilic asthma. Neither signal associated with FEV1, FEV1/forced vital capacity, atopy, and age of asthma onset. The 2 IL33 signals are expression quantitative loci in bronchial brushes and cultured HBECs, but not in lung tissue. IL33 overexpression in vitro resulted in reduced viability and reactive oxygen species-capturing of HBECs, without influencing epithelial cell count, metabolic activity, or barrier function. CONCLUSIONS: We identify IL33 as an epithelial susceptibility gene for eosinophilia and asthma, provide mechanistic insight, and implicate targeting of the IL33 pathway specifically in eosinophilic asthma.


Asunto(s)
Asma , Regulación de la Expresión Génica/inmunología , Predisposición Genética a la Enfermedad , Interleucina-33 , Polimorfismo de Nucleótido Simple , Adulto , Asma/genética , Asma/inmunología , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Interleucina-33/genética , Interleucina-33/inmunología , Masculino , Persona de Mediana Edad
3.
JCI Insight ; 5(8)2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32324168

RESUMEN

The IL1RL1 (ST2) gene locus is robustly associated with asthma; however, the contribution of single nucleotide polymorphisms (SNPs) in this locus to specific asthma subtypes and the functional mechanisms underlying these associations remain to be defined. We tested for association between IL1RL1 region SNPs and characteristics of asthma as defined by clinical and immunological measures and addressed functional effects of these genetic variants in lung tissue and airway epithelium. Utilizing 4 independent cohorts (Lifelines, Dutch Asthma GWAS [DAG], Genetics of Asthma Severity and Phenotypes [GASP], and Manchester Asthma and Allergy Study [MAAS]) and resequencing data, we identified 3 key signals associated with asthma features. Investigations in lung tissue and primary bronchial epithelial cells identified context-dependent relationships between the signals and IL1RL1 mRNA and soluble protein expression. This was also observed for asthma-associated IL1RL1 nonsynonymous coding TIR domain SNPs. Bronchial epithelial cell cultures from asthma patients, exposed to exacerbation-relevant stimulations, revealed modulatory effects for all 4 signals on IL1RL1 mRNA and/or protein expression, suggesting SNP-environment interactions. The IL1RL1 TIR signaling domain haplotype affected IL-33-driven NF-κB signaling, while not interfering with TLR signaling. In summary, we identify that IL1RL1 genetic signals potentially contribute to severe and eosinophilic phenotypes in asthma, as well as provide initial mechanistic insight, including genetic regulation of IL1RL1 isoform expression and receptor signaling.


Asunto(s)
Asma/genética , Predisposición Genética a la Enfermedad/genética , Proteína 1 Similar al Receptor de Interleucina-1/genética , Asma/inmunología , Genotipo , Humanos , Pulmón/inmunología , Fenotipo , Polimorfismo de Nucleótido Simple , Mucosa Respiratoria/inmunología
4.
Eur J Hum Genet ; 25(3): 332-340, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28000697

RESUMEN

Huntington disease (HD) is a dominant neurodegenerative disorder caused by a CAG repeat expansion in the Huntingtin (HTT) gene. HD occurs worldwide, but the causative mutation is found on different HTT haplotypes in distinct ethnic groups. In Latin America, HD is thought to have European origins, but indigenous Amerindian ancestry has not been investigated. Here, we report dense HTT haplotypes in 62 mestizo Peruvian HD families, 17 HD families from across Latin America, and 42 controls of defined Peruvian Amerindian ethnicity to determine the origin of HD in populations of admixed Amerindian and European descent. HD in Peru occurs most frequently on the A1 HTT haplotype (73%), as in Europe, but on an unexpected indigenous variant also found in Amerindian controls. This Amerindian A1 HTT haplotype predominates over the European A1 variant among geographically disparate Latin American controls and in HD families from across Latin America, supporting an indigenous origin of the HD mutation in mestizo American populations. We also show that a proportion of HD mutations in Peru occur on a C1 HTT haplotype of putative Amerindian origin (14%). The majority of HD mutations in Latin America may therefore occur on haplotypes of Amerindian ancestry rather than on haplotypes resulting from European admixture. Despite the distinct ethnic ancestry of Amerindian and European A1 HTT, alleles on the parent A1 HTT haplotype allow for development of identical antisense molecules to selectively silence the HD mutation in the greatest proportion of patients in both Latin American and European populations.


Asunto(s)
Haplotipos , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Indígenas Sudamericanos/genética , Mutación , Población Blanca/genética , Humanos , Enfermedad de Huntington/etnología , Linaje , Perú
5.
Mol Immunol ; 63(1): 80-5, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25017307

RESUMEN

Interleukin-33 (IL-33) is a recently discovered cytokine that belongs to the IL-1 superfamily and acts as an important regulator in several allergic disorders. It is considered to function as an alarmin, or danger cytokine, that is released upon structural cell damage. IL-33 activates several immune cells, including Th2 cells, mast cells and basophils, following its interaction with a cell surface heterodimer consisting of an IL-1 receptor-related protein ST2 (IL-1RL1) and IL-1 receptor accessory protein (IL-1RAcP). This activation leads to the production of a variety of Th2-like cytokines that mediate allergic-type immune responses. Thus, IL-33 appears to be a double-edged sword because, in addition to its important contribution to host defence, it exacerbates allergic responses, such as allergic rhinitis and asthma. A major purported mechanism of IL-33 in allergy is the activation of mast cells to produce a variety of pro-inflammatory cytokines and chemokines. In this review, we summarize the current knowledge regarding the genetics and physiology of IL-33 and IL-1RL1 and its association with different allergic diseases by focusing on its effects on mast cells and basophils.


Asunto(s)
Basófilos/inmunología , Hipersensibilidad/inmunología , Interleucinas/inmunología , Mastocitos/inmunología , Receptores Tipo I de Interleucina-1/inmunología , Humanos , Proteína Accesoria del Receptor de Interleucina-1/inmunología , Interleucina-33 , Transducción de Señal/inmunología , Células Th2/inmunología
6.
Eur J Hum Genet ; 21(10): 1120-7, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23463025

RESUMEN

Huntington disease (HD) is a neurodegenerative disorder resulting from the expansion of a CAG trinucleotide repeat in the huntingtin (HTT) gene. Worldwide prevalence varies geographically with the highest figures reported in populations of European ancestry. HD in South Africa has been reported in Caucasian, black and mixed subpopulations, with similar estimated prevalence in the Caucasian and mixed groups and a lower estimate in the black subpopulation. Recent studies have associated specific HTT haplotypes with HD in distinct populations. Expanded HD alleles in Europe occur predominantly on haplogroup A (specifically high-risk variants A1/A2), whereas in East Asian populations, HD alleles are associated with haplogroup C. Whether specific HTT haplotypes associate with HD in black Africans and how these compare with haplotypes found in European and East Asian populations remains unknown. The current study genotyped the HTT region in unaffected individuals and HD patients from each of the South African subpopulations, and haplotypes were constructed. CAG repeat sizes were determined and phased to haplotype. Results indicate that HD alleles from Caucasian and mixed patients are predominantly associated with haplogroup A, signifying a similar European origin for HD. However, in black patients, HD occurs predominantly on haplogroup B, suggesting several distinct origins of the mutation in South Africa. The absence of high-risk variants (A1/A2) in the black subpopulation may also explain the reported low prevalence of HD. Identification of haplotypes associated with HD-expanded alleles is particularly relevant to the development of population-specific therapeutic targets for selective suppression of the expanded HTT transcript.


Asunto(s)
Población Negra/genética , Haplotipos , Enfermedad de Huntington/genética , Población Blanca/genética , Alelos , Estudios de Casos y Controles , Humanos , Proteína Huntingtina , Enfermedad de Huntington/epidemiología , Enfermedad de Huntington/etnología , Proteínas del Tejido Nervioso/genética , Polimorfismo de Nucleótido Simple , Sudáfrica
7.
J Allergy Clin Immunol ; 131(3): 856-65, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23380221

RESUMEN

Asthma is a complex disease that results from the interaction between genetic predisposition and environmental factors. Recently, genome-wide association studies have identified a number of genes that significantly contribute to asthma. Two of these genes, IL33 and IL-1 receptor-like 1 (IL1RL1), act in one signal transduction pathway. IL33 encodes a cytokine released on damage of cells, whereas IL1RL1 encodes part of the IL-33 receptor complex. Recent progress made in functional studies in human subjects and mouse models of allergic airway disease indicate a central role of IL-33 signaling in driving TH2 inflammation, which is central to eosinophilic allergic asthma. Here, IL-33 acts on cells of both the adaptive and innate immune systems. Very recently, a novel population of IL-33-responsive innate immune cells, the type 2 innate lymphoid cells, was found to produce hallmark TH2 cytokines, such as IL-5 and IL-13. The relevance of these cells for asthma is underscored by the identification of retinoic acid-related orphan receptor α(RORA), the gene encoding the transcription factor critical for their differentiation, as another asthma gene in genome-wide association studies. This review describes the mechanisms through which genetic variation at the IL33 and IL1RL1 loci translates into increased susceptibility for asthma. We propose that genetic variation associated with asthma at the IL33 and IL1RL1 loci can be dissected into independent signals with distinct functional consequences for this pathway that is central to asthma pathogenesis.


Asunto(s)
Asma/genética , Interleucinas/genética , Receptores Tipo I de Interleucina-1/genética , Animales , Asma/inmunología , Predisposición Genética a la Enfermedad , Humanos , Interleucina-33 , Interleucinas/inmunología , Polimorfismo de Nucleótido Simple , Receptores Tipo I de Interleucina-1/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...