Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
IUCrJ ; 9(Pt 1): 104-113, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35059215

RESUMEN

X-ray diffraction based microscopy techniques such as high-energy diffraction microscopy (HEDM) rely on knowledge of the position of diffraction peaks with high precision. These positions are typically computed by fitting the observed intensities in detector data to a theoretical peak shape such as pseudo-Voigt. As experiments become more complex and detector technologies evolve, the computational cost of such peak-shape fitting becomes the biggest hurdle to the rapid analysis required for real-time feedback in experiments. To this end, we propose BraggNN, a deep-learning based method that can determine peak positions much more rapidly than conventional pseudo-Voigt peak fitting. When applied to a test dataset, peak center-of-mass positions obtained from BraggNN deviate less than 0.29 and 0.57 pixels for 75 and 95% of the peaks, respectively, from positions obtained using conventional pseudo-Voigt fitting (Euclidean distance). When applied to a real experimental dataset and using grain positions from near-field HEDM reconstruction as ground-truth, grain positions using BraggNN result in 15% smaller errors compared with those calculated using pseudo-Voigt. Recent advances in deep-learning method implementations and special-purpose model inference accelerators allow BraggNN to deliver enormous performance improvements relative to the conventional method, running, for example, more than 200 times faster on a consumer-class GPU card with out-of-the-box software.

2.
J Opt Soc Am A Opt Image Sci Vis ; 37(3): 422-434, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32118926

RESUMEN

Synchrotron-based x-ray tomography is a noninvasive imaging technique that allows for reconstructing the internal structure of materials at high spatial resolutions from tens of micrometers to a few nanometers. In order to resolve sample features at smaller length scales, however, a higher radiation dose is required. Therefore, the limitation on the achievable resolution is set primarily by noise at these length scales. We present TomoGAN, a denoising technique based on generative adversarial networks, for improving the quality of reconstructed images for low-dose imaging conditions. We evaluate our approach in two photon-budget-limited experimental conditions: (1) sufficient number of low-dose projections (based on Nyquist sampling), and (2) insufficient or limited number of high-dose projections. In both cases, the angular sampling is assumed to be isotropic, and the photon budget throughout the experiment is fixed based on the maximum allowable radiation dose on the sample. Evaluation with both simulated and experimental datasets shows that our approach can significantly reduce noise in reconstructed images, improving the structural similarity score of simulation and experimental data from 0.18 to 0.9 and from 0.18 to 0.41, respectively. Furthermore, the quality of the reconstructed images with filtered back projection followed by our denoising approach exceeds that of reconstructions with the simultaneous iterative reconstruction technique, showing the computational superiority of our approach.

3.
Adv Struct Chem Imaging ; 3(1): 6, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28261544

RESUMEN

BACKGROUND: Modern synchrotron light sources and detectors produce data at such scale and complexity that large-scale computation is required to unleash their full power. One of the widely used imaging techniques that generates data at tens of gigabytes per second is computed tomography (CT). Although CT experiments result in rapid data generation, the analysis and reconstruction of the collected data may require hours or even days of computation time with a medium-sized workstation, which hinders the scientific progress that relies on the results of analysis. METHODS: We present Trace, a data-intensive computing engine that we have developed to enable high-performance implementation of iterative tomographic reconstruction algorithms for parallel computers. Trace provides fine-grained reconstruction of tomography datasets using both (thread-level) shared memory and (process-level) distributed memory parallelization. Trace utilizes a special data structure called replicated reconstruction object to maximize application performance. We also present the optimizations that we apply to the replicated reconstruction objects and evaluate them using tomography datasets collected at the Advanced Photon Source. RESULTS: Our experimental evaluations show that our optimizations and parallelization techniques can provide 158× speedup using 32 compute nodes (384 cores) over a single-core configuration and decrease the end-to-end processing time of a large sinogram (with 4501 × 1 × 22,400 dimensions) from 12.5 h to <5 min per iteration. CONCLUSION: The proposed tomographic reconstruction engine can efficiently process large-scale tomographic data using many compute nodes and minimize reconstruction times.

4.
J Synchrotron Radiat ; 23(Pt 4): 997-1005, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27359149

RESUMEN

New technological advancements in synchrotron light sources enable data acquisitions at unprecedented levels. This emergent trend affects not only the size of the generated data but also the need for larger computational resources. Although beamline scientists and users have access to local computational resources, these are typically limited and can result in extended execution times. Applications that are based on iterative processing as in tomographic reconstruction methods require high-performance compute clusters for timely analysis of data. Here, time-sensitive analysis and processing of Advanced Photon Source data on geographically distributed resources are focused on. Two main challenges are considered: (i) modeling of the performance of tomographic reconstruction workflows and (ii) transparent execution of these workflows on distributed resources. For the former, three main stages are considered: (i) data transfer between storage and computational resources, (i) wait/queue time of reconstruction jobs at compute resources, and (iii) computation of reconstruction tasks. These performance models allow evaluation and estimation of the execution time of any given iterative tomographic reconstruction workflow that runs on geographically distributed resources. For the latter challenge, a workflow management system is built, which can automate the execution of workflows and minimize the user interaction with the underlying infrastructure. The system utilizes Globus to perform secure and efficient data transfer operations. The proposed models and the workflow management system are evaluated by using three high-performance computing and two storage resources, all of which are geographically distributed. Workflows were created with different computational requirements using two compute-intensive tomographic reconstruction algorithms. Experimental evaluation shows that the proposed models and system can be used for selecting the optimum resources, which in turn can provide up to 3.13× speedup (on experimented resources). Moreover, the error rates of the models range between 2.1 and 23.3% (considering workflow execution times), where the accuracy of the model estimations increases with higher computational demands in reconstruction tasks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...