Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39193887

RESUMEN

We study responses of thermally annealed ultrathin films deposited on silicon substrates and containing polyzwitterions to applied electric fields by using specular neutron reflectometry (NR). In particular, we applied 7 kV under vacuum at 150 °C on the films containing poly(1-(3-sulfonatopropyl)-2-vinylpyridinium) (P2VPPS) and its blends with either a deuterated ionic liquid (EMIMBF4-d11), potassium bromide (KBr), or deuterated sodium polystyrenesulfonate (NaPSS-d7). The voltage was applied over an air gap, and the in situ neutron reflectivity measurements allowed us to measure changes in the films. In all the cases, we measured decreases in thicknesses of the films, which varied up to ∼8% depending on the added salt. Posteriori X-ray reflectivity (XRR) measurements on the same films at room temperature reveal that these films were highly hygroscopic, which led to the presence of water in these films. Analysis of the NR and the XRR revealed that the decrease in the thickness of the films in the neutron reflectivity experiments on heating resulted from the loss of water and the ionic liquid but not from electrostrictive effects. The in situ NR and posteriori XRR experiments revealed not only the hygroscopic nature of these films but also depth-resolved structural rearrangements due to the applied electric fields in the films containing electrolytes and polyelectrolytes. This work shows that a combination of NR and XRR can be used to distinguish between mass loss and electrostriction in films containing charged polymers such as polyzwitterions.

2.
ACS Omega ; 9(26): 28764-28775, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38973877

RESUMEN

This research examines the correlation between interfacial characteristics and membrane distillation (MD) performance of copper oxide (Cu) nanoparticle-decorated electrospun carbon nanofibers (CNFs) polyvinylidene fluoride (PVDF) mixed matrix membranes. The membranes were fabricated by a bottom-up phase inversion method to incorporate a range of concentrations of CNF and Cu + CNF particles in the polymer matrix to tune the porosity, crystallinity, and wettability of the membranes. The resultant membranes were tested for their application in desalination by comparing the water vapor transport and salt rejection rates in the presence of Cu and CNF. Our results demonstrated a 64% increase in water vapor flux and a salt rejection rate of over 99.8% with just 1 wt % loading of Cu + CNF in the PVDF matrix. This was attributed to enhanced chemical heterogeneity, porosity, hydrophobicity, and crystallinity that was confirmed by electron microscopy, tensiometry, and scattering techniques. A machine learning segmentation model was trained on electron microscopy images to obtain the spatial distribution of pores in the membrane. An Autoregressive Integrated Moving Average with Explanatory Variable (ARIMAX) statistical time series model was trained on MD experimental data obtained for various membranes to forecast the membrane performance over an extended duration.

3.
RSC Adv ; 14(25): 17696-17709, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38832238

RESUMEN

Mg alloy corrosion susceptibility is a major issue that limits its wide industrial application in transport, energy and medical sectors. A corrosion-resistant layer containing crystalline MgCO3 was formed on the surface of AZ91D Mg alloy by Li salt loading and thermal CO2 treatment. Compared to the uncoated AZ91D surface, the surface layer exhibited up to a ∼15-fold increase in corrosion resistance according to the electrochemical results in 3.5 wt% NaCl solution and ∼32% decrease in wear rate compared to untreated AZ91D. The improved corrosion resistance is attributed to the formation of a <10 µm thick dense layer containing Mg, O, C and Li with crystalline MgCO3 phases. The initial step was to form a porous MgO layer on the surface of AZ91D Mg alloy, followed by loading an alkali metal salt (i.e., LiNO3) onto the MgO surface. The porous MgO surface was then reconstructed into a dense insulation layer containing Mg carbonate through CO2 absorption facilitated by molten Li salt during thermal CO2 treatment at 350 °C. As a potential method to utilize excessive CO2 for beneficial outcomes, the formation of the carbonate-containing film introduced in this study opens a new pathway for protecting various existing Mg alloys for diverse industrial applications.

4.
ACS Macro Lett ; 13(3): 280-287, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38346266

RESUMEN

We present a streamlined method to covalently bond hydroxylated carbon nanotubes (CNOH) within a polyphenol matrix, all achieved through a direct, solvent-free process. Employing an extremely small concentration of CNOH (0.01% w/w) along with topologically contrasting linkers led to a maximum of 5-fold increase in modulus and a 25% enhancement in tensile strength compared to the unaltered matrix, an order of magnitude greater reinforcement (w/w) compared to state-of-the-art melt-processed nanocomposites. Through dynamic mechanical analysis, low field solid-state nuclear magnetic resonance spectroscopy, and molecular dynamics simulations, we uncovered the profound influence of linker's conformational degrees of freedom on the segmental dynamics and therefore the material's properties.

5.
ACS Nano ; 18(4): 2750-2762, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38174956

RESUMEN

The predictive design of flexible and solvent-free polymer electrolytes for solid-state batteries requires an understanding of the fundamental principles governing the ion transport. In this work, we establish a correlation among the composite structures, polymer segmental dynamics, and lithium ion (Li+) transport in a ceramic-polymer composite. Elucidating this structure-property relationship will allow tailoring of the Li+ conductivity by optimizing the macroscopic electrochemical stability of the electrolyte. The ion dissociation from the slow polymer segmental dynamics was found to be enhanced by controlling the morphology and functionality of the polymer/ceramic interface. The chemical structure of the Li+ salt in the composite electrolyte was correlated with the size of the ionic cluster domains, the conductivity mechanism, and the electrochemical stability of the electrolyte. Polyethylene oxide (PEO) filled with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) or lithium bis(fluorosulfonyl) imide (LiFSI) salts was used as a matrix. A garnet electrolyte, aluminum substituted lithium lanthanum zirconium oxide (Al-LLZO) with a planar geometry, was used for the ceramic nanoparticle moieties. The dynamics of the strongly bound and highly mobile Li+ were investigated using dielectric relaxation spectroscopy. The incorporation of the Al-LLZO platelets increased the number density of more mobile Li+. The structure of the nanoscale ion-agglomeration was investigated by small-angle X-ray scattering, while molecular dynamics (MD) simulation studies were conducted to obtain the fundamental mechanism of the decorrelation of the Li+ in the LiTFSI and LiFSI salts from the long PEO chain.

6.
ChemSusChem ; 17(2): e202300735, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-37682803

RESUMEN

Solvent-based CO2 capture consumes significant amounts of energy for solvent regeneration. To improve energy efficiency, this study investigates CO2 fixation in a solid form through solvation, followed by ionic self-assembly-aided precipitation. Based on the hypothesis that CO3 2- ions may bind with monovalent metal ions, we introduced Na+ into an aqueous hexane-1,6-diamine solution where CO2 forms carbamate and bicarbonate. Then, Na+ ions in the solvent act as a seed for ionic self-assembly with diamine carbamate to form an intermediate ionic complex. The recurring chemical reactions lead to the formation of an ionic solid from a mixture of organic carbamate/carbonate and inorganic sodium bicarbonate (NaHCO3 ), which can be easily removed from the aqueous solvent through sedimentation or centrifugation and heated to release the captured CO2 . Mild-temperature heating of the solids at 80-150 °C causes decomposition of the solid CO2 -diamine-Na molecular aggregates and discharge of CO2 . This sorbent regeneration process requires 6.5-8.6 GJ/t CO2 . It was also found that the organic carbamate/carbonate solid, without NaHCO3 , contains a significant amount of CO2 , up to 6.2 mmol CO2 /g-sorbent, requiring as low as 2.9-5.8 GJ/t CO2 . Molecular dynamic simulations support the hypothesis of using Na+ to form relatively less stable, yet sufficiently solid, complexes for the least energy-intensive recovery of diamine solvents compared to bivalent carbonate-forming ions.

7.
Angew Chem Int Ed Engl ; 62(47): e202310989, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37783669

RESUMEN

Despite intensive research on sustainable elastomers, achieving elastic vitrimers with significantly improved mechanical properties and recyclability remains a scientific challenge. Herein, inspired by the classical elasticity theory, we present a design principle for ultra-tough and highly recyclable elastic vitrimers with a defined network constructed by chemically crosslinking the pre-synthesized disulfide-containing polydimethylsiloxane (PDMS) chains with tetra-arm polyethylene glycol (PEG). The defined network is achieved by the reduced dangling short chains and the relatively uniform molecular weight of network strands. Such elastic vitrimers with the defined network, i.e., PDMS-disulfide-D, exhibit significantly improved mechanical performance than random analogous, previously reported PDMS vitrimers, and even commercial silicone-based thermosets. Moreover, unlike the vitrimers with random network that show obvious loss in mechanical properties after recycling, those with the defined network enable excellent thermal recyclability. The PDMS-disulfide-D also deliver comparable electrochemical signals if utilized as substrates for electromyography sensors after the recycling. The multiple relaxation processes are revealed via a unique physical approach. Multiple techniques are also applied to unravel the microscopic mechanism of the excellent mechanical performance and recyclability of such defined network.

8.
ACS Appl Electron Mater ; 5(8): 4556-4563, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37637973

RESUMEN

Interfacial strain in heteroepitaxial oxide thin films is a powerful tool for discovering properties and recognizing the potential of materials performance. Particularly, facilitating ion conduction by interfacial strain in oxide multilayer thin films has always been seen to be a highly promising route to this goal. However, the effect of interfacial strain on ion transport properties is still controversial due to the difficulty in deconvoluting the strain contribution from other interfacial phenomena, such as space charge effects. Here, we show that interfacial strain can effectively tune the ionic conductivity by successfully growing multilayer thin films composed of an ionic conductor Gd-doped CeO2 (GDC) and an insulator RE2O3 (RE = Y and Sm). In contrast to compressively strained GDC-Y2O3 multilayer films, tensile strained GDC-Sm2O3 multilayer films demonstrate the enhanced ionic conductivity of GDC, which is attributed to the increased concentration of oxygen vacancies. In addition, we demonstrate that increasing the number of interfaces has no impact on the further enhancement of the ionic conductivity in GDC-Sm2O3 multilayer films. Our findings demonstrate the unambiguous role of interfacial strain on ion conduction of oxides and provide insights into the rational design of fast ion conductors through interface engineering.

9.
PNAS Nexus ; 2(7): pgad204, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37424896

RESUMEN

Polyzwitterions (PZs) are considered as model synthetic analogs of intrinsically disordered proteins. Based on this analogy, PZs in dilute aqueous solutions are expected to attain either globular (i.e. molten, compact) or random coil conformations. Addition of salt is expected to open these conformations. To the best of our knowledge, these hypotheses about conformations of PZs have never been verified. In this study, we test these hypotheses by studying effects of added salt [potassium bromide (KBr)] on gyration and hydrodynamic radii of poly(sulfobetaine methacrylate) in dilute aqueous solutions using dynamic light scattering and small-angle X-ray scattering, respectively. Effects of zwitteration are revealed by direct comparisons of the PZs with the polymers of the same backbone but containing (1) no explicit charges on side groups such as poly(2-dimethylaminoethyl methacrylate)s and (2) explicit cationic side groups with tertiary amino bromide pendants. Zeta-potential measurements, transmission electron microscopy, and ab initio molecular dynamics simulations reveal that the PZs acquire net positive charge in near salt-free conditions due to protonation but retain coiled conformations. Added KBr leads to nonmonotonic changes exhibiting an increase followed by a decrease in radius of gyration (and hydrodynamic radius), which are called antipolyelectrolyte and polyelectrolyte effects, respectively. Charge regulation and screening of charge-charge interactions are discussed in relation to the antipolyelectrolyte and polyelectrolyte effects, respectively, which highlight the importance of salt in affecting net charge and conformations of PZs.

10.
Biomacromolecules ; 24(6): 2730-2740, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37261758

RESUMEN

Oppositely charged polyelectrolytes often form polyelectrolyte complexes (PECs) due to the association through electrostatic interactions. Obtaining PECs using natural, biocompatible polyelectrolytes is of interest in the food, pharmaceutical, and biomedical industries. In this work, PECs were prepared from two biopolymers, positively charged chitosan and negatively charged alginate. We investigate the changes in the structure and properties of PECs by adding sodium chloride (salt doping) to the system. The shear modulus of PECs can be tuned from ∼10 to 104 Pa by changing the salt concentration. The addition of salt led to a decrease in the water content of the complex phase with increasing shear modulus. However, at a very high salt concentration, the shear modulus of the complex phase decreased but did not lead to the liquid coacervate formation, typical of synthetic polyelectrolytes. This difference in phase behavior has likely been attributed to the hydrophobicity of chitosan and long semiflexible alginate and chitosan chains that restrict the conformational changes. Large amplitude oscillatory shear experiments captured nonlinear responses of PECs. The compositions of the PECs, determined as a function of salt concentration, signify the preferential partitioning of salt into the complex phase. Small-angle X-ray scattering of the salt-doped PECs indicates that the Kuhn length and radius of the alginate-chitosan associated structure qualitatively agree with the captured phase behavior and rheological data. This study provides insights into the structure-property as a function of salt concentration of natural polymer-based PECs necessary for developing functional materials from natural polyelectrolytes.


Asunto(s)
Quitosano , Polielectrolitos/química , Quitosano/química , Alginatos/química , Cloruro de Sodio , Polímeros/química
11.
Nat Nanotechnol ; 18(4): 357-364, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36702955

RESUMEN

The success of the lead halide perovskites in diverse optoelectronics has motivated considerable interest in their fundamental photocarrier dynamics. Here we report the discovery of photocarrier-induced persistent structural polarization and local ferroelectricity in lead halide perovskites. Photoconductance studies of thin-film single-crystal CsPbBr3 at 10 K reveal long-lasting persistent photoconductance with an ultralong photocarrier lifetime beyond 106 s. X-ray diffraction studies reveal that photocarrier-induced structural polarization is present up to a critical freezing temperature. Photocapacitance studies at cryogenic temperatures further demonstrate a systematic local phase transition from linear dielectric to paraelectric and relaxor ferroelectric under increasing illumination. Our theoretical investigations highlight the critical role of photocarrier-phonon coupling and large polaron formation in driving the local relaxor ferroelectric phase transition. Our findings show that this photocarrier-induced persistent structural polarization enables the formation of ferroelectric nanodomains at low temperature, which suppress carrier recombination and offer the possibility of exploring intriguing carrier-phonon interplay and the rich polaron photophysics.

12.
J Phys Chem B ; 127(1): 308-320, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36577128

RESUMEN

Concentrated ionic solutions present a potential improvement for liquid electrolytes. However, their conductivity is limited by high viscosities, which can be attenuated via cosolvation. This study employs a series of experiments and molecular dynamics simulations to investigate how different cosolvents influence the local structure and charge transport in concentrated lithium bis(trifluoromethane-sulfonyl)imide (LiTFSI)/acetonitrile solutions. Regardless of whether the cosolvent's dielectric constant is low (for toluene and dichloromethane), moderate (acetone), or high (methanol and water), they preserve the structural and dynamical features of the cosolvent-free precursor. However, the dissimilar effects of each case must be individually interpreted. Toluene and dichloromethane reduce the conductivity by narrowing the distribution of Li+-TFSI- interactions and increasing the activation energies for ionic motions. Methanol and water broaden the distributions of Li+-TFSI- interactions, replace acetonitrile in the Li+ solvation, and favor short-range Li+-Li+ interactions. Still, these cosolvents strongly interact with TFSI-, leading to conductivities lower than that predicted by the Nernst-Einstein relation. Finally, acetone preserves the ion-ion interactions from the cosolvent-free solution but forms large solvation complexes by joining acetonitrile in the Li+ solvation. We demonstrate that cosolvation affects conductivity beyond simply changing viscosity and provide fairly unexplored molecular-scale perspectives regarding structure/transport phenomena relation in concentrated ionic solutions.

13.
ACS Macro Lett ; 11(4): 595-602, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35575342

RESUMEN

We report that hot stretching of poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) can lead to a preferred orientation of PEO crystalline lamellae, thereby reducing the tortuosity of the ion-conduction pathway along the thickness direction of the SPE film, causing improved ionic conductivity. The hot stretching method is implemented by stretching SPE films above the melting point of PEO in an inert environment followed by crystallization at room temperature while maintaining the applied strain. The effect of hot stretching on the crystalline orientation, crystallinity, morphology, and ion transport in PEO with two types of salts, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium triflate (LiCF3SO3), is investigated in detail. Wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering (SAXS) show that the orientation of PEO crystalline lamellae induces the formation of a short ion-conduction pathway along the through-plane direction of the SPE films, leading to 1.4- to 3.5-fold enhancement in the through-plane ionic conductivity.

14.
Nanomaterials (Basel) ; 10(9)2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32867130

RESUMEN

The mechanical and thermal conductivity properties of two composite elastomers were studied. Styrene-butadiene rubber (SBR) filled with functionalized graphene oxide (GO) and silica nanofibers, and styrene-butadiene-styrene (SBS) block copolymers filled with graphene oxide. For the SBR composites, GO fillers with two different surface functionalities were synthesized (cysteamine and dodecylamine) and dispersed in the SBR using mechanical and liquid mixing techniques. The hydrophilic cysteamine-based GO fillers were dispersed in the SBR by mechanical mixing, whereas the hydrophobic dodecylamine-based GO fillers were dispersed in the SBR by liquid mixing. Silica nanofibers (SnFs) were fabricated by electrospinning a sol-gel precursor solution. The surface chemistry of the functionalized fillers was studied in detail. The properties of the composites and the synergistic improvements between the GO and SnFs are presented. For the SBS composites, GO fillers were dispersed in the SBS elastomer at several weight percent loadings using liquid mixing. Characterization of the filler material and the composite elastomers was performed using x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron microscopy, scanning electron microscopy, thermogravimetric analysis, dynamic mechanical analysis, tensile testing, nanoindentation, thermal conductivity and abrasion testing.

15.
ACS Omega ; 5(33): 21231-21240, 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32869009

RESUMEN

Chloroquine and its derivative hydroxychloroquine are primarily known as antimalaria drugs. Here, we investigate the influence of hydration water on the molecular dynamics in hydroxychloroquine sulfate, a commonly used solubilized drug form. When hydration, even at a low level, results in a disordered structure, as opposed to the highly ordered structure of dry hydroxychloroquine sulfate, the activation barriers for the rotation of methyl groups in the drug molecules become randomized and, on average, significantly reduced. The facilitated stochastic motions of the methyl groups may benefit the biomolecular activity due to the more efficient sampling of the energy landscape in the disordered hydration environment experienced by the drug molecules in vivo.

16.
Materials (Basel) ; 13(8)2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32326094

RESUMEN

We report a facile approach to control the shape memory effects and thermomechanical characteristics of a lignin-based multiphase polymer. Solvent fractionation of a syringylpropane-rich technical organosolv lignin resulted in selective lignin structures having excellent thermal stability coupled with high stiffness and melt-flow resistance. The fractionated lignins were reacted with rubber in melt-phase to form partially networked elastomer enabling selective programmability of the material shape either at 70 °C, a temperature that is high enough for rubbery matrix materials, or at an extremely high temperature, 150 °C. Utilizing appropriate functionalities in fractionated lignins, tunable shape fixity with high strain and stress recovery, particularly high-stress tolerance were maintained. Detailed studies of lignin structures and chemistries were correlated to molecular rigidity, morphology, and stress relaxation, as well as shape memory effects of the materials. The fractionation of lignin enabled enrichment of specific lignin properties for efficient shape memory effects that broaden the materials' application window. Electron microscopy, melt-rheology, dynamic mechanical analysis and ultra-small angle neutron scattering were conducted to establish morphology of acrylonitrile butadiene rubber (NBR)-lignin elastomers from solvent fractionated lignins.

17.
Front Chem ; 8: 592604, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33520929

RESUMEN

Solid polymer electrolytes are promising in fulfilling the requirements for a stable lithium metal anode toward higher energy and power densities. In this work, we investigate the segmental dynamics, ionic conductivity, and crystallinity of a polymer electrolyte consisting of poly(ethylene oxide) (PEO) and lithium triflate salt, in the semi-crystalline state. Using quasi-elastic neutron scattering, the segmental dynamics of PEO chains confined between the crystalline lamellae is quantified, using Cole-Cole analysis. We show that the structural relaxation time, τ0, of PEO equilibrated near room temperature is six-fold longer than the same sample that had just cooled down to room temperature. This corresponds to a three-fold smaller ionic conductivity in the equilibrated condition. This work reveals that the segmental dynamics of semi-crystalline polymer electrolytes is very sensitive to thermal history. We demonstrate that quasi-elastic neutron scattering can be used to characterize the ion transport and segmental dynamics in the semi-crystalline state.

18.
Soft Matter ; 16(7): 1760-1770, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-31859322

RESUMEN

Photo-initiated thiol-ene click chemistry is used to develop shape memory liquid crystalline networks (LCNs). A biphenyl-based di-vinyl monomer is synthesized and cured with a di-thiol chain extender and a tetra-thiol crosslinker using UV light. The effects of photo-initiator concentration and UV light intensity on the curing behavior and liquid crystalline (LC) properties of the LCNs are investigated. The chemical composition is found to significantly influence the microstructure and the related thermomechanical properties of the LCNs. The structure-property relationship is further explored using molecular dynamics simulations, revealing that the introduction of the chain extender promotes the formation of an ordered smectic LC phase instead of agglomerated structures. The concentration of the chain extender affects the liquid crystallinity of the LCNs, resulting in distinct thermomechanical and shape memory properties. This class of LCNs exhibits fast curing rates, high conversion levels, and tailorable liquid crystallinity, making it a promising material system for advanced manufacturing, where complex and highly ordered structures can be produced with fast reaction kinetics and low energy consumption.

19.
Glob Chall ; 3(8): 1900003, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31565393

RESUMEN

Solar-thermal driven desalination based on porous carbon materials has promise for fresh water production. Exploration of high-efficiency solar desalination devices has not solved issues for practical application, namely complicated fabrication, cost-effectiveness, and scalability. Here, direct solar-thermal carbon distillation (DS-CD) tubular devices are introduced that have a facile fabrication process, are scalable, and use an inexpensive but efficient microporous graphite foam coated with carbon nanoparticle and superhydrophobic materials. The "black" composite foam serving as a solar light absorber heats up salt water effectively to produce fresh water vapor, and the superhydrophobic surface of the foam traps the liquid feed in the device. Two proof-of-principle distillation systems are adopted, i.e., solar still and membrane distillation and the fabricated devices are evaluated for direct solar desalination efficiency. For the solar still, nanoparticle and fluorosilane coatings on the porous surface increase the solar energy absorbance, resulting in a solar-steam generation efficiency of 64% from simulated seawater at 1 sun. The membrane distillation demonstrates excellent vapor production (≈6.6 kg m-2 h-1) with >99.5% salt rejection under simulated 3 sun solar-thermal irradiation. Unlike traditional solar desalination, the adaptable DS-CD can easily be scaled up to larger systems such as high-temperature tubular modules, presenting a promising solution for solar-energy-driven desalination.

20.
Macromol Rapid Commun ; 40(13): e1900059, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31021483

RESUMEN

An ionomeric, leathery thermoplastic with high mechanical strength is prepared by a new thermal processing method from a soft, melt-processable rubber. Compositions made by incorporation of equal-mass lignin, a renewable oligomeric feedstock, in an acrylonitrile-butadiene rubber often yield weak rubbers with large lignin domains (1-2 µm). The addition of zinc chloride (ZnCl2 ) in such a composition based on sinapyl alcohol-rich lignin during a solvent-free synthesis induces a strong interfacial crosslinking between lignin and rubber phases. This compositional modification results in finely interspersed lignin domains (<100 nm) that essentially reinforce the rubbery matrix with a 10-22 °C rise in the glassy-to-rubbery transition temperature. The ion-modified polymer blends also show improved materials properties, like a 100% increase in ultimate tensile strength and an order of magnitude rise in Young's modulus. Coarse-grained molecular dynamics (MD) simulations verify the morphology and dynamics of the ionomeric material. The computed result also confirms that the ionomers have glassy characteristics.


Asunto(s)
Lignina/química , Nanopartículas/química , Plásticos/química , Polímeros/química , Goma/química , Acrilonitrilo/química , Butadienos/química , Reactivos de Enlaces Cruzados/química , Resistencia a la Tracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...