Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
EBioMedicine ; 108: 105320, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39236556

RESUMEN

BACKGROUND: The HVTN 705 Imbokodo trial of 2636 people without HIV and assigned female sex at birth, conducted in southern Africa, evaluated a heterologous HIV-1 vaccine regimen: mosaic adenovirus 26-based vaccine (Ad26.Mos4.HIV) at Months 0, 3, 6, 12 and alum-adjuvanted clade C gp140 at Months 6, 12. Per-protocol vaccine efficacy (VE) against HIV-1 diagnosis from seven to 24 months was 14.1% (95% CI: -22.0% to 39.5%). Immune correlates analysis was performed for markers selected based on prior evidence in efficacy trials and/or nonhuman primate models. METHODS: Humoral and cellular immune response markers at Month 7 were evaluated as immune correlates of risk and of protection in a breakthrough case-control cohort (n = 52 cases, 246 non-cases). Primary markers were IgG binding to vaccine-strain gp140, IgG3 binding to diverse Env antigens (IgG3 Env breadth), IgG3 binding to diverse V1V2 antigens (IgG3 V1V2 breadth), antibody-dependent phagocytosis against the vaccine-strain gp140, Env-specific CD4+ and CD8+ T-cell responses, and multi-epitope functions. FINDINGS: No immune markers were statistically significant correlates of risk. IgG3 V1V2 breadth trended toward an inverse association: hazard ratio 0.70 (95% CI: 0.36 to 1.35; p = 0.29) per 10-fold increase and 0.51 (95% CI: 0.21 to 1.24; p = 0.14) in a Cox model with all primary markers. The VE estimate was 11.8% (95% CI: -17.9% to 34.0%) at all IgG3 V1V2 breadth values below 667 weighted geometric mean net MFI; just above this value, the VE estimate sharply increased to 62.6% (95% CI: -17.9% to 89.6%), and further increased to 80.9% (95% CI: -17.9% to 99.5%) at 1471 MFI, the 95th percentile of the marker distribution. Mediation analysis yielded a VE of 35.7% (95% CI: 15.0% to 51.3%) attributable to the vaccine's impact on this marker. INTERPRETATION: The trend in association of greater IgG3 V1V2 antibody breadth with lower likelihood of HIV acquisition is consistent with the identification of antibodies against V1V2 as immune correlates in three other HIV vaccine efficacy trials and suggests that a greater emphasis should be placed on studying this region in the HIV-1 envelope as a vaccine immunogen. FUNDING: National Institute of Allergy and Infectious Diseases and Janssen Vaccines & Prevention BV.

2.
Nat Commun ; 14(1): 7897, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38036525

RESUMEN

Immune responses to SARS-CoV-2 primarily target the receptor binding domain of the spike protein, which continually mutates to escape acquired immunity. Other regions in the spike S2 subunit, such as the stem helix and the segment encompassing residues 815-823 adjacent to the fusion peptide, are highly conserved across sarbecoviruses and are recognized by broadly reactive antibodies, providing hope that vaccines targeting these epitopes could offer protection against both current and emergent viruses. Here we employ computational modeling to design scaffolded immunogens that display the spike 815-823 peptide and the stem helix epitopes without the distracting and immunodominant receptor binding domain. These engineered proteins bind with high affinity and specificity to the mature and germline versions of previously identified broadly protective human antibodies. Epitope scaffolds interact with both sera and isolated monoclonal antibodies with broadly reactivity from individuals with pre-existing SARS-CoV-2 immunity. When used as immunogens, epitope scaffolds elicit sera with broad betacoronavirus reactivity and protect as "boosts" against live virus challenge in mice, illustrating their potential as components of a future pancoronavirus vaccine.


Asunto(s)
Anticuerpos Antivirales , SARS-CoV-2 , Humanos , Animales , Ratones , Epítopos , Epítopos Inmunodominantes , Péptidos , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Neutralizantes
3.
bioRxiv ; 2023 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-36909627

RESUMEN

Immune responses to SARS-CoV-2 primarily target the receptor binding domain of the spike protein, which continually mutates to escape acquired immunity. Other regions in the spike S2 subunit, such as the stem helix and the segment encompassing residues 815-823 adjacent to the fusion peptide, are highly conserved across sarbecoviruses and are recognized by broadly reactive antibodies, providing hope that vaccines targeting these epitopes could offer protection against both current and emergent viruses. Here we employed computational modeling to design scaffolded immunogens that display the spike 815-823 peptide and the stem helix epitopes without the distracting and immunodominant RBD. These engineered proteins bound with high affinity and specificity to the mature and germline versions of previously identified broadly protective human antibodies. Epitope scaffolds interacted with both sera and isolated monoclonal antibodies with broadly reactivity from individuals with pre-existing SARS-CoV-2 immunity. When used as immunogens, epitope scaffolds elicited sera with broad betacoronavirus reactivity and protected as "boosts" against live virus challenge in mice, illustrating their potential as components of a future pancoronavirus vaccine.

4.
Cytometry A ; 101(6): 483-496, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35301794

RESUMEN

Since the beginning of the SARS-CoV-2 pandemic, antibody responses and antibody effector functions targeting SARS-CoV-2-infected cells have been understudied. Consequently, the role of these types of antibodies in SARS-CoV-2 disease (COVID-19) and immunity is still undetermined. To provide tools to study these responses, we used plasma from SARS-CoV-2-infected individuals (n = 50) and SARS-CoV-2 naive healthy controls (n = 20) to develop four specific and reproducible flow cytometry-based assays: (i) two assessing antibody binding to, and antibody-mediated NK cell degranulation against, SARS-CoV-2-infected cells and (ii) two assessing antibody binding to, and antibody-mediated NK cell degranulation against, SARS-CoV-2 Spike-transfected cells. All four assays demonstrated the ability to detect the presence of these functional antibody responses in a specific and reproducible manner. Interestingly, we found weak to moderate correlations between the four assays (Spearman rho ranged from 0.50 to 0.74), suggesting limited overlap in the responses captured by the individual assays. Lastly, while we initially developed each assay with multiple dilutions in an effort to capture the full relationship between antibody titers and assay outcome, we explored the relationship between fewer antibody dilutions and the full dilution series for each assay to reduce assay costs and improve assay efficiency. We found high correlations between the full dilution series and fewer or single dilutions of plasma. Use of single or fewer sample dilutions to accurately determine the response rates and magnitudes of the responses allows for high-throughput use of these assays platforms to facilitate assessment of antibody responses elicited by SARS-CoV-2 infection and vaccination in large clinical studies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Degranulación de la Célula , Citometría de Flujo , Humanos , Glicoproteína de la Espiga del Coronavirus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...