Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nat Med ; 30(2): 373-381, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38182784

RESUMEN

Traumatic brain injury (TBI) is a leading cause of disability. Sequelae can include functional impairments and psychiatric syndromes such as post-traumatic stress disorder (PTSD), depression and anxiety. Special Operations Forces (SOF) veterans (SOVs) may be at an elevated risk for these complications, leading some to seek underexplored treatment alternatives such as the oneirogen ibogaine, a plant-derived compound known to interact with multiple neurotransmitter systems that has been studied primarily as a treatment for substance use disorders. Ibogaine has been associated with instances of fatal cardiac arrhythmia, but coadministration of magnesium may mitigate this concern. In the present study, we report a prospective observational study of the Magnesium-Ibogaine: the Stanford Traumatic Injury to the CNS protocol (MISTIC), provided together with complementary treatment modalities, in 30 male SOVs with predominantly mild TBI. We assessed changes in the World Health Organization Disability Assessment Schedule from baseline to immediately (primary outcome) and 1 month (secondary outcome) after treatment. Additional secondary outcomes included changes in PTSD (Clinician-Administered PTSD Scale for DSM-5), depression (Montgomery-Åsberg Depression Rating Scale) and anxiety (Hamilton Anxiety Rating Scale). MISTIC resulted in significant improvements in functioning both immediately (Pcorrected < 0.001, Cohen's d = 0.74) and 1 month (Pcorrected < 0.001, d = 2.20) after treatment and in PTSD (Pcorrected < 0.001, d = 2.54), depression (Pcorrected < 0.001, d = 2.80) and anxiety (Pcorrected < 0.001, d = 2.13) at 1 month after treatment. There were no unexpected or serious adverse events. Controlled clinical trials to assess safety and efficacy are needed to validate these initial open-label findings. ClinicalTrials.gov registration: NCT04313712 .


Asunto(s)
Lesiones Traumáticas del Encéfalo , Ibogaína , Veteranos , Humanos , Veteranos/psicología , Magnesio/uso terapéutico , Resultado del Tratamiento , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico
2.
Psychol Med ; 54(8): 1651-1660, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38131344

RESUMEN

BACKGROUND: The modulation of brain circuits of emotion is a promising pathway to treat borderline personality disorder (BPD). Precise and scalable approaches have yet to be established. Two studies investigating the amygdala-related electrical fingerprint (Amyg-EFP) in BPD are presented: one study addressing the deep-brain correlates of Amyg-EFP, and a second study investigating neurofeedback (NF) as a means to improve brain self-regulation. METHODS: Study 1 combined electroencephalography (EEG) and simultaneous functional magnetic resonance imaging to investigate the replicability of Amyg-EFP-related brain activation found in the reference dataset (N = 24 healthy subjects, 8 female; re-analysis of published data) in the replication dataset (N = 16 female individuals with BPD). In the replication dataset, we additionally explored how the Amyg-EFP would map to neural circuits defined by the research domain criteria. Study 2 investigated a 10-session Amyg-EFP NF training in parallel to a 12-weeks residential dialectical behavior therapy (DBT) program. Fifteen patients with BPD completed the training, N = 15 matched patients served as DBT-only controls. RESULTS: Study 1 replicated previous findings and showed significant amygdala blood oxygenation level dependent activation in a whole-brain regression analysis with the Amyg-EFP. Neurocircuitry activation (negative affect, salience, and cognitive control) was correlated with the Amyg-EFP signal. Study 2 showed Amyg-EFP modulation with NF training, but patients received reversed feedback for technical reasons, which limited interpretation of results. CONCLUSIONS: Recorded via scalp EEG, the Amyg-EFP picks up brain activation of high relevance for emotion. Administering Amyg-EFP NF in addition to standardized BPD treatment was shown to be feasible. Clinical utility remains to be investigated.


Asunto(s)
Amígdala del Cerebelo , Trastorno de Personalidad Limítrofe , Electroencefalografía , Imagen por Resonancia Magnética , Neurorretroalimentación , Humanos , Trastorno de Personalidad Limítrofe/terapia , Trastorno de Personalidad Limítrofe/fisiopatología , Neurorretroalimentación/métodos , Femenino , Amígdala del Cerebelo/fisiopatología , Amígdala del Cerebelo/diagnóstico por imagen , Adulto , Masculino , Adulto Joven , Prueba de Estudio Conceptual , Terapia Conductista/métodos
3.
Am J Psychiatry ; 180(2): 146-154, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36628514

RESUMEN

OBJECTIVE: The weak link between subjective symptom-based diagnostic methods for posttraumatic psychopathology and objectively measured neurobiological indices forms a barrier to the development of effective personalized treatments. To overcome this problem, recent studies have aimed to stratify psychiatric disorders by identifying consistent subgroups based on objective neural markers. Along these lines, a promising 2021 study by Stevens et al. identified distinct brain-based biotypes associated with different longitudinal patterns of posttraumatic symptoms. Here, the authors conducted a conceptual nonexact replication of that study using a comparable data set from a multimodal longitudinal study of recent trauma survivors. METHODS: A total of 130 participants (mean age, 33.61 years, SD=11.21; 48% women) admitted to a general hospital emergency department following trauma exposure underwent demographic, clinical, and neuroimaging assessments 1, 6, and 14 months after trauma. All analyses followed the pipeline outlined in the original study and were conducted in collaboration with its authors. RESULTS: Task-based functional MRI conducted 1 month posttrauma was used to identify four clusters of individuals based on profiles of neural activity reflecting threat and reward reactivity. These clusters were not identical to the previously identified brain-based biotypes and were not associated with prospective symptoms of posttraumatic psychopathology. CONCLUSIONS: Overall, these findings suggest that the original brain-based biotypes of trauma resilience and psychopathology may not generalize to other populations. Thus, caution is warranted when attempting to define subtypes of psychiatric vulnerability using neural indices before treatment implications can be fully realized. Additional replication studies are needed to identify more stable and generalizable neuroimaging-based biotypes of posttraumatic psychopathology.


Asunto(s)
Trastornos por Estrés Postraumático , Humanos , Femenino , Adulto , Masculino , Trastornos por Estrés Postraumático/psicología , Estudios Longitudinales , Estudios Prospectivos , Encéfalo/diagnóstico por imagen , Neuroimagen
4.
Neurosci Biobehav Rev ; 138: 104694, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35623447

RESUMEN

Amygdala NeuroFeedback (NF) have the potential of being a valuable non-invasive intervention tool in many psychiatric disporders. However, the feasibility and best practices of this method have not been systematically examined. The current article presents a review of amygdala-NF studies, an analytic summary of study design parameters, and examination of brain mechanisms related to successful amygdala-NF performance. A meta-analysis of 33 publications showed that real amygdala-NF facilitates learned modulation compared to control conditions. In addition, while variability in study dsign parameters is high, these design choices are implicitly organized by the targeted valence domain (positive or negative). However, in most cases the neuro-behavioral effects of targeting such domains were not directly assessed. Lastly, re-analyzing six data sets of amygdala-fMRI-NF revealed that successful amygdala down-modulation is coupled with deactivation of the posterior insula and nodes in the Default-Mode-Network. Our findings suggest that amygdala self-modulation can be acquired using NF. Yet, additional controlled studies, relevant behavioral tasks before and after NF intervention, and neural 'target engagement' measures are critically needed to establish efficacy and specificity. In addition, the fMRI analysis presented here suggest that common accounts regarding the brain network involved in amygdala NF might reflect unsuccessful modulation attempts rather than successful modulation.


Asunto(s)
Neurorretroalimentación , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/fisiología , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Estudios de Factibilidad , Humanos , Imagen por Resonancia Magnética/métodos , Neurorretroalimentación/métodos
5.
Neuroimage Clin ; 32: 102859, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34689055

RESUMEN

BACKGROUND: Amygdala activity dysregulation plays a central role in post-traumatic stress disorder (PTSD). Hence learning to self-regulate one's amygdala activity may facilitate recovery. PTSD is further characterized by abnormal contextual processing related to the traumatic memory. Therefore, provoking the personal traumatic narrative while training amygdala down-regulation could enhance clinical efficacy. We report the results of a randomized controlled trial (NCT02544971) of a novel self-neuromodulation procedure (i.e. NeuroFeedback) for PTSD, aimed at down-regulating limbic activity while receiving feedback from an auditory script of a personal traumatic narrative. To scale-up applicability, neural activity was probed by an fMRI-informed EEG model of amygdala activity, termed Amygdala Electrical Finger-Print (AmygEFP). METHODS: Fifty-nine adults meeting DSM-5 criteria for PTSD were randomized between three groups: Trauma-script feedback interface (Trauma-NF) or Neutral feedback interface (Neutral-NF), and a control group of No-NF (to control for spontaneous recovery). Before and immediately after 15 NF training sessions patients were blindly assessed for PTSD symptoms and underwent one session of amygdala fMRI-NF for transferability testing. Follow-up clinical assessment was performed at 3- and 6-months following NF treatment. RESULTS: Patients in both NF groups learned to volitionally down-regulate AmygEFP signal and demonstrated a greater reduction in PTSD symptoms and improved down-regulation of the amygdala during fMRI-NF, compared to the No-NF group. The Trauma-NF group presented the largest immediate clinical improvement. CONCLUSIONS: This proof-of-concept study indicates the feasibility of the AmygEFP-NF process-driven as a scalable intervention for PTSD and illustrates its clinical potential. Further investigation is warranted to elucidate the contribution of AmygEFP-NF beyond exposure and placebo effects.


Asunto(s)
Neurorretroalimentación , Trastornos por Estrés Postraumático , Adulto , Amígdala del Cerebelo , Humanos , Aprendizaje , Imagen por Resonancia Magnética , Trastornos por Estrés Postraumático/diagnóstico por imagen , Trastornos por Estrés Postraumático/terapia
6.
Hum Brain Mapp ; 41(14): 3839-3854, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32729652

RESUMEN

Neurofeedback training has been shown to influence behavior in healthy participants as well as to alleviate clinical symptoms in neurological, psychosomatic, and psychiatric patient populations. However, many real-time fMRI neurofeedback studies report large inter-individual differences in learning success. The factors that cause this vast variability between participants remain unknown and their identification could enhance treatment success. Thus, here we employed a meta-analytic approach including data from 24 different neurofeedback studies with a total of 401 participants, including 140 patients, to determine whether levels of activity in target brain regions during pretraining functional localizer or no-feedback runs (i.e., self-regulation in the absence of neurofeedback) could predict neurofeedback learning success. We observed a slightly positive correlation between pretraining activity levels during a functional localizer run and neurofeedback learning success, but we were not able to identify common brain-based success predictors across our diverse cohort of studies. Therefore, advances need to be made in finding robust models and measures of general neurofeedback learning, and in increasing the current study database to allow for investigating further factors that might influence neurofeedback learning.


Asunto(s)
Mapeo Encefálico , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Imagen por Resonancia Magnética , Neurorretroalimentación/fisiología , Práctica Psicológica , Adulto , Humanos , Pronóstico
7.
Nat Hum Behav ; 3(1): 63-73, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30932053

RESUMEN

Real-time functional magnetic resonance imaging (rt-fMRI) has revived the translational perspective of neurofeedback (NF)1. Particularly for stress management, targeting deeply located limbic areas involved in stress processing2 has paved new paths for brain-guided interventions. However, the high cost and immobility of fMRI constitute a challenging drawback for the scalability (accessibility and cost-effectiveness) of the approach, particularly for clinical purposes3. The current study aimed to overcome the limited applicability of rt-fMRI by using an electroencephalography (EEG) model endowed with improved spatial resolution, derived from simultaneous EEG-fMRI, to target amygdala activity (termed amygdala electrical fingerprint (Amyg-EFP))4-6. Healthy individuals (n = 180) undergoing a stressful military training programme were randomly assigned to six Amyg-EFP-NF sessions or one of two controls (control-EEG-NF or NoNF), taking place at the military training base. The results demonstrated specificity of NF learning to the targeted Amyg-EFP signal, which led to reduced alexithymia and faster emotional Stroop, indicating better stress coping following Amyg-EFP-NF relative to controls. Neural target engagement was demonstrated in a follow-up fMRI-NF, showing greater amygdala blood-oxygen-level-dependent downregulation and amygdala-ventromedial prefrontal cortex functional connectivity following Amyg-EFP-NF relative to NoNF. Together, these results demonstrate limbic specificity and efficacy of Amyg-EFP-NF during a stressful period, pointing to a scalable non-pharmacological yet neuroscience-based training to prevent stress-induced psychopathology.


Asunto(s)
Síntomas Afectivos/terapia , Amígdala del Cerebelo/fisiología , Ondas Encefálicas/fisiología , Neurorretroalimentación/métodos , Resiliencia Psicológica , Estrés Psicológico/terapia , Adolescente , Adulto , Amígdala del Cerebelo/diagnóstico por imagen , Método Doble Ciego , Neuroimagen Funcional , Humanos , Imagen por Resonancia Magnética , Masculino , Personal Militar , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/fisiología , Resultado del Tratamiento , Adulto Joven
9.
PLoS One ; 11(5): e0154968, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27163677

RESUMEN

Recent evidence suggests that learned self-regulation of localized brain activity in deep limbic areas such as the amygdala, may alleviate symptoms of affective disturbances. Thus far self-regulation of amygdala activity could be obtained only via fMRI guided neurofeedback, an expensive and immobile procedure. EEG on the other hand is relatively inexpensive and can be easily implemented in any location. However the clinical utility of EEG neurofeedback for affective disturbances remains limited due to low spatial resolution, which hampers the targeting of deep limbic areas such as the amygdala. We introduce an EEG prediction model of amygdala activity from a single electrode. The gold standard used for training is the fMRI-BOLD signal in the amygdala during simultaneous EEG/fMRI recording. The suggested model is based on a time/frequency representation of the EEG data with varying time-delay. Previous work has shown a strong inhomogeneity among subjects as is reflected by the models created to predict the amygdala BOLD response from EEG data. In that work, different models were constructed for different subjects. In this work, we carefully analyzed the inhomogeneity among subjects and were able to construct a single model for the majority of the subjects. We introduce a method for inhomogeneity assessment. This enables us to demonstrate a choice of subjects for which a single model could be derived. We further demonstrate the ability to modulate brain-activity in a neurofeedback setting using feedback generated by the model. We tested the effect of the neurofeedback training by showing that new subjects can learn to down-regulate the signal amplitude compared to a sham group, which received a feedback obtained by a different participant. This EEG based model can overcome substantial limitations of fMRI-NF. It can enable investigation of NF training using multiple sessions and large samples in various locations.


Asunto(s)
Amígdala del Cerebelo/fisiología , Electroencefalografía/métodos , Modelos Neurológicos , Neurorretroalimentación/métodos , Adulto , Electrodos , Electroencefalografía/instrumentación , Femenino , Voluntarios Sanos , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Trastornos del Humor/diagnóstico , Trastornos del Humor/fisiopatología , Neurorretroalimentación/instrumentación , Factores de Tiempo
10.
Biol Psychiatry ; 80(6): 490-496, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-26996601

RESUMEN

The amygdala has a pivotal role in processing traumatic stress; hence, gaining control over its activity could facilitate adaptive mechanism and recovery. To date, amygdala volitional regulation could be obtained only via real-time functional magnetic resonance imaging (fMRI), a highly inaccessible procedure. The current article presents high-impact neurobehavioral implications of a novel imaging approach that enables bedside monitoring of amygdala activity using fMRI-inspired electroencephalography (EEG), hereafter termed amygdala-electrical fingerprint (amyg-EFP). Simultaneous EEG/fMRI indicated that the amyg-EFP reliably predicts amygdala-blood oxygen level-dependent activity. Implementing the amyg-EFP in neurofeedback demonstrated that learned downregulation of the amyg-EFP facilitated volitional downregulation of amygdala-blood oxygen level-dependent activity via real-time fMRI and manifested as reduced amygdala reactivity to visual stimuli. Behavioral evidence further emphasized the therapeutic potential of this approach by showing improved implicit emotion regulation following amyg-EFP neurofeedback. Additional EFP models denoting different brain regions could provide a library of localized activity for low-cost and highly accessible brain-based diagnosis and treatment.


Asunto(s)
Amígdala del Cerebelo/fisiología , Interfaces Cerebro-Computador/psicología , Electroencefalografía/métodos , Emociones/fisiología , Imagen por Resonancia Magnética/métodos , Adulto , Regulación hacia Abajo/fisiología , Humanos , Aprendizaje Automático , Neurorretroalimentación/fisiología , Estimulación Luminosa , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...