Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38860598

RESUMEN

Optimizing catalysts through high-throughput screening for asymmetric catalysis is challenging due to the difficulty associated with assembling a library of catalyst analogues in a timely fashion. Here, we repurpose DNA excision repair and integrate it with bioorthogonal conjugation to construct a diverse array of DNA hybrid catalysts for highly accessible and high-throughput asymmetric DNA catalysis, enabling a dramatically expedited catalyst optimization process, superior reactivity and selectivity, as well as the first atroposelective DNA catalysis. The bioorthogonality of this conjugation strategy ensures exceptional tolerance toward diverse functional groups, thereby facilitating the facile construction of 44 DNA hybrid catalysts bearing various unprotected functional groups. This unique feature holds the potential to enable catalytic modalities in asymmetric DNA catalysis that were previously deemed unattainable.

2.
Chem Sci ; 15(13): 5009-5018, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38550688

RESUMEN

Probing the sequence alterations, structures, interactions, and other important aspects of nucleic acids serves as the cornerstone of understanding nucleic acid-mediated biology and etiology, as well as the development of nucleic acid-based therapeutics. New strategies capable of accommodating these imperatives without necessitating specialized instrument or skills and potentially complementing existing methods are highly desired. Herein, we describe a rationally designed molecular rotor CCVJ-H ((9-(2-carboxy-2-cyanovinyl)julolidine-hydrazide)) and its superior performances compared to the universal base excision reporter probe CCVJ-1 in applications such as nucleic acid detection and DNA glycosylase assays. Furthermore, we showcase that the CCVJ-H probe accurately profiles the interactions between nucleic acids and small molecules, providing binding affinity and binding site information in a single reaction. We subsequently demonstrate the feasibility of applying the CCVJ-H system in high-throughput screening to identify nucleic acid-binding small molecules such as DNA CTG repeat expansion binders, potentially providing therapeutic interventions for myotonic dystrophy type 1. Finally, we profile the recognition difference between DNA/DNA and DNA/RNA against a library of small molecules, uncovering two drug-like molecules that preferentially bind DNA/RNA. We anticipate the versatile CCVJ-H probe will be a useful tool for both fundamental and translational nucleic acid research and application.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA