Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
PLoS Genet ; 19(3): e1010664, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36943844

RESUMEN

Pleiotropy-when a single gene controls two or more seemingly unrelated traits-has been shown to impact genes with effects on flowering time, leaf architecture, and inflorescence morphology in maize. However, the genome-wide impact of biological pleiotropy across all maize phenotypes is largely unknown. Here, we investigate the extent to which biological pleiotropy impacts phenotypes within maize using GWAS summary statistics reanalyzed from previously published metabolite, field, and expression phenotypes across the Nested Association Mapping population and Goodman Association Panel. Through phenotypic saturation of 120,597 traits, we obtain over 480 million significant quantitative trait nucleotides. We estimate that only 1.56-32.3% of intervals show some degree of pleiotropy. We then assess the relationship between pleiotropy and various biological features such as gene expression, chromatin accessibility, sequence conservation, and enrichment for gene ontology terms. We find very little relationship between pleiotropy and these variables when compared to permuted pleiotropy. We hypothesize that biological pleiotropy of common alleles is not widespread in maize and is highly impacted by nuisance terms such as population structure and linkage disequilibrium. Natural selection on large standing natural variation in maize populations may target wide and large effect variants, leaving the prevalence of detectable pleiotropy relatively low.


Asunto(s)
Estudio de Asociación del Genoma Completo , Zea mays , Mapeo Cromosómico , Zea mays/genética , Fenotipo , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Pleiotropía Genética
3.
Proc Natl Acad Sci U S A ; 119(14): e2112516119, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35349347

RESUMEN

SignificanceProteins are the machinery which execute essential cellular functions. However, measuring their abundance within an organism can be difficult and resource-intensive. Cells use a variety of mechanisms to control protein synthesis from mRNA, including short open reading frames (uORFs) that lie upstream of the main coding sequence. Ribosomes can preferentially translate uORFs instead of the main coding sequence, leading to reduced translation of the main protein. In this study, we show that uORF sequence variation between individuals can lead to different rates of protein translation and thus variable protein abundances. We also demonstrate that natural variation in uORFs occurs frequently and can be linked to whole-plant phenotypes, indicating that uORF sequence variation likely contributes to plant adaptation.


Asunto(s)
Biosíntesis de Proteínas , Zea mays , Regiones no Traducidas 5' , Sistemas de Lectura Abierta/genética , Biosíntesis de Proteínas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Zea mays/genética , Zea mays/metabolismo
4.
PLoS Genet ; 17(10): e1009568, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34606492

RESUMEN

Genomic prediction typically relies on associations between single-site polymorphisms and traits of interest. This representation of genomic variability has been successful for predicting many complex traits. However, it usually cannot capture the combination of alleles in haplotypes and it has generated little insight about the biological function of polymorphisms. Here we present a novel and cost-effective method for imputing cis haplotype associated RNA expression (HARE), studied their transferability across tissues, and evaluated genomic prediction models within and across populations. HARE focuses on tightly linked cis acting causal variants in the immediate vicinity of the gene, while excluding trans effects from diffusion and metabolism. Therefore, HARE estimates were more transferrable across different tissues and populations compared to measured transcript expression. We also showed that HARE estimates captured one-third of the variation in gene expression. HARE estimates were used in genomic prediction models evaluated within and across two diverse maize panels-a diverse association panel (Goodman Association panel) and a large half-sib panel (Nested Association Mapping panel)-for predicting 26 complex traits. HARE resulted in up to 15% higher prediction accuracy than control approaches that preserved haplotype structure, suggesting that HARE carried functional information in addition to information about haplotype structure. The largest increase was observed when the model was trained in the Nested Association Mapping panel and tested in the Goodman Association panel. Additionally, HARE yielded higher within-population prediction accuracy as compared to measured expression values. The accuracy achieved by measured expression was variable across tissues, whereas accuracy by HARE was more stable across tissues. Therefore, imputing RNA expression of genes by haplotype is stable, cost-effective, and transferable across populations.


Asunto(s)
Haplotipos/genética , Sitios de Carácter Cuantitativo/genética , ARN/genética , Zea mays/genética , Alelos , Mapeo Cromosómico/métodos , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Genotipo , Desequilibrio de Ligamiento/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética
5.
Genome Res ; 31(7): 1245-1257, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34045362

RESUMEN

Thousands of species will be sequenced in the next few years; however, understanding how their genomes work, without an unlimited budget, requires both molecular and novel evolutionary approaches. We developed a sensitive sequence alignment pipeline to identify conserved noncoding sequences (CNSs) in the Andropogoneae tribe (multiple crop species descended from a common ancestor ∼18 million years ago). The Andropogoneae share similar physiology while being tremendously genomically diverse, harboring a broad range of ploidy levels, structural variation, and transposons. These contribute to the potential of Andropogoneae as a powerful system for studying CNSs and are factors we leverage to understand the function of maize CNSs. We found that 86% of CNSs were comprised of annotated features, including introns, UTRs, putative cis-regulatory elements, chromatin loop anchors, noncoding RNA (ncRNA) genes, and several transposable element superfamilies. CNSs were enriched in active regions of DNA replication in the early S phase of the mitotic cell cycle and showed different DNA methylation ratios compared to the genome-wide background. More than half of putative cis-regulatory sequences (identified via other methods) overlapped with CNSs detected in this study. Variants in CNSs were associated with gene expression levels, and CNS absence contributed to loss of gene expression. Furthermore, the evolution of CNSs was associated with the functional diversification of duplicated genes in the context of maize subgenomes. Our results provide a quantitative understanding of the molecular processes governing the evolution of CNSs in maize.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA