Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Can J Microbiol ; 69(11): 439-448, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37364294

RESUMEN

The rhizosphere is a narrow soil area directly affected by plant root exudates. Microbes inhabiting the rhizosphere have been widely studied for their beneficial effects on plant nutrition, growth, and disease prevention. Many factors affect the rhizosphere microbial composition, including plant pathogen infection. Here, we analyzed the bacterial community structure in the rhizosphere of fungi-infected Amorphophallus titanum. Soil samples were collected from rhizosphere and non-rhizosphere areas of fungi-infected A. titanum. The 16S metagenomic analysis was conducted to investigate the bacterial community of the samples by amplifying the V3-V4 region. The results showed that the phylum Firmicutes was prevalent in the rhizosphere, whereas the phyla Proteobacteria, Acidobacteria, and Actinobacteria were limited. Some major fungal genera were isolated from infected tubers and rhizosphere soil of A. titanum, including Trichoderma sp., Aspergillus sp., Perenniporia sp., and Cerrena sp. The fungal-isolate Aspergillus spp. is a well-known agricultural pest in several reports. While Cerrena sp. was reported to be pathogenic in plants, including the family of Arecaceae. Overall, the data revealed a potential relationship between fungal infections and the dominant bacterial community in the rhizosphere of A. titanum. Additionally, this research may contribute to the development of microbe-based technology to mitigate diseases in A. titanum.


Asunto(s)
Amorphophallus , Microbiota , Trichoderma , Hongos , Rizosfera , Raíces de Plantas/microbiología , Microbiología del Suelo , Bacterias , Suelo/química , ARN Ribosómico 16S/genética
2.
Chemosphere ; 268: 129247, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33383277

RESUMEN

The advantages of aquatic biomass production using wastewater as a cost-free fertilizer have recently been highlighted. Here, we report a successful study in which duckweed, Lemna gibba, biomass production in a food factory effluent containing low nitrogen and high salts was enhanced by employing customized plant growth-promoting bacteria (PGPB). Two common PGPB strains previously obtained from natural pond water, Acinetobacter calcoaceticus P23 and Pseudomonas fulva Ps6, hardly promoted the growth of duckweed; on the contrary, they inhibited its growth in treated factory wastewater, far different water conditions. Then, we asked if some indigenous wastewater bacteria could promote the growth of duckweed. We found that Chryseobacterium strains, a group of bacteria with limited nitrogen metabolism, were dominantly selected as effective PGPB. Moreover, we demonstrated that nitrogen limitation is the crucial environmental factor that induces the plant growth-inhibiting behavior of A. calcoaceticus P23 through competition for mineral nutrients with the host duckweed. This study uncovered points to be considered in PGPB technology to achieve efficient production of duckweed biomass in a factory effluent with unbalanced content of mineral nutrients.


Asunto(s)
Araceae , Bacterias/genética , Biomasa , Pseudomonas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...