Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Life Sci ; 331: 121931, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37442416

RESUMEN

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.

2.
Rev Environ Health ; 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37076952

RESUMEN

In today's society, with the continuous development of manufacturing industries and factories related to chemicals, the amount of heavy metals in the inhaled air of humans, water and even food consumption has increased dramatically. The aim of this study was investigation of relationship between exposure to heavy metals on the increased carcinogenicity risk of kidney and bladder. Databases used to for searched were the Springer, Google Scholar, Web of Science, Science Direct (Scopus) and PubMed. At the end after sieve we selected 20 papers. Identify all relevant studies published 2000-2021. The results of this study showed that exposure to heavy metals due to the bio accumulative properties of these metals can cause kidney and bladder abnormalities and provide the basis through various mechanisms for malignant tumors in these organs. Based on result this study, since a limited number of heavy metals including copper, iron, zinc and nickel in very small amounts as micronutrients play a very important role in the function of enzymes and the body cells biological reactions, but exposure to some of them like arsenic, lead, vanadium and mercury will cause irreversible effects on people's health and cause various diseases including cancers of the liver, pancreas, prostate, breast, kidney and bladder. The kidneys, ureter and bladder are the most important organs in the urinary tract on human. According to the result of this study, the duty of this urinary system is to remove toxins, chemicals and heavy metals from the blood, balance electrolytes, excrete excess fluid, produce urine and transfer it to the bladder. This mechanism causes the kidneys and bladder to be highly associated with these toxins and heavy metals, which can lead to various diseases in these two important organs. According to the finding the reducing exposure to heavy metals in various ways can prevent many diseases related to this system and reduce the incidence of kidney and bladder cancers.

3.
Int J Biol Macromol ; 231: 123354, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36681228

RESUMEN

Nowadays, the most common approaches in the prognosis, diagnosis, and treatment of diseases are along with undeniable limitations. Thus, the ever-increasing need for using biocompatible natural materials and novel practical modalities is required. Applying biomaterials, such as chitosan nanoparticles (CS NPs: FDA-approved long-chain polymer of N-acetyl-glucosamine and D-glucosamine for some pharmaceutical applications), can serve as an appropriate alternative to overcome these limitations. Recently, the biomedical applications of CS NPs have extensively been investigated. These NPs and their derivatives can not only prepare through different physical and chemical approaches but also modify with various molecules and bioactive materials. The potential properties of CS NPs, such as biocompatibility, biodegradability, serum stability, solubility, non-immunogenicity, anti-inflammatory properties, appropriate pharmacokinetics and pharmacodynamics, and so forth, have made them excellent candidates for biomedical applications. Therefore, CS NPs have efficiently applied for various biomedical applications, like regenerative medicine and tissue engineering, biosensors for the detection of microorganisms, and drug delivery systems (DDS) for the suppression of diseases. These NPs possess a high level of biosafety. In summary, CS NPs have the potential ability for biomedical and clinical applications, and it would be remarkably beneficial to develop new generations of CS-based material for the future of medicine.


Asunto(s)
Quitosano , Nanopartículas , Quitosano/química , Preparaciones Farmacéuticas , Materiales Biocompatibles/química , Sistemas de Liberación de Medicamentos , Nanopartículas/química
4.
Front Microbiol ; 14: 1276241, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38179444

RESUMEN

Pollen is a vector for diversification, fitness-selection, and transmission of plant genetic material. The extent to which the pollen microbiome may contribute to host diversification is largely unknown, because pollen microbiome diversity within a plant species has not been reported, and studies have been limited to conventional short-read 16S rRNA gene sequencing (e.g., V4-MiSeq) which suffers from poor taxonomic resolution. Here we report the pollen microbiomes of 16 primitive and traditional accessions of maize (corn) selected by indigenous peoples across the Americas, along with the modern U.S. inbred B73. The maize pollen microbiome has not previously been reported. The pollen microbiomes were identified using full-length (FL) 16S rRNA gene PacBio SMRT sequencing compared to V4-MiSeq. The Pan-American maize pollen microbiome encompasses 765 taxa spanning 39 genera and 46 species, including known plant growth promoters, insect-obligates, plant pathogens, nitrogen-fixers and biocontrol agents. Eleven genera and 13 species composed the core microbiome. Of 765 taxa, 63% belonged to only four genera: 28% were Pantoea, 15% were Lactococcus, 11% were Pseudomonas, and 10% were Erwinia. Interestingly, of the 215 Pantoea taxa, 180 belonged to a single species, P. ananatis. Surprisingly, the diversity within P. ananatis ranged nearly 10-fold amongst the maize accessions analyzed (those with ≥3 replicates), despite being grown in a common field. The highest diversity within P. ananatis occurred in accessions that originated near the center of diversity of domesticated maize, with reduced diversity associated with the north-south migration of maize. This sub-species diversity was revealed by FL-PacBio but missed by V4-MiSeq. V4-MiSeq also mis-identified some dominant genera captured by FL-PacBio. The study, though limited to a single season and common field, provides initial evidence that pollen microbiomes reflect evolutionary and migratory relationships of their host plants.

5.
Eur J Pharmacol ; 931: 175172, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35944619

RESUMEN

AIMS: Diabetic cardiomyopathy is diagnosed by the development of abnormality in the structure and performance of myocardium in diabetic mellitus (DM) patients. Recent studies reported the association between altered gut microbiota and metabolic disorders like diabetes and cardiovascular diseases. Here, we aimed to investigate the gut-heart axis in an experimental animal model where we developed a novel therapeutic combination of dapagliflozin, crocin prebiotic and Lactobacilli probiotic to correct induced diabetic cardiomyopathy. MATERIALS AND METHODS: Diabetes mellitus was induced by Intraperitoneal (i.p) streptozotocin in male rats. The experimental design includes the administration of the tested drugs (Crocin, Dapagliflozin) solely and with Lactobacillus, or in combination therapy with and without Lactobacillus to the diabetic rats for six weeks. Clinical and microscopic evaluation scoring for cardiac tissues were determined. Biochemical markers including blood glucose level, adiponectin, resistin, cardiac injury markers, lipid profile, antioxidant enzymes, pro and anti-inflammatory markers were assessed. In addition, quantitative relative expression of PPARγ and TXINP genes and capsase-3 levels were measured. The change in the microbiota abundance was investigated using real-time PCR. KEY FINDINGS: This study demonstrated the synergistic effect of the triple combination; dapagliflozin, crocin prebiotic, and Lactobacillus fermentum and Lactobacillus delbrueckii probiotic in treating diabetic cardiomyopathy in rats. The triple combination significantly reduced the oxidative, inflammatory, apoptotic activities induced by streptozotocin STZ and helped in restoring the symbiotic gut microbiota. SIGNIFICANCE: It is worthy to perform this study in clinical trials as a primary step to include crocin and Lactobacilli in the therapeutic protocols of diabetic cardiomyopathy.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Microbioma Gastrointestinal , Animales , Compuestos de Bencidrilo , Carotenoides , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/metabolismo , Glucósidos , Lactobacillus/metabolismo , Masculino , Estrés Oxidativo , PPAR gamma/metabolismo , Ratas , Ratas Wistar , Estreptozocina
6.
Antibiotics (Basel) ; 11(4)2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35453246

RESUMEN

Urinary catheters are commonly associated with urinary tract infections. This study aims to inhibit bacterial colonisation and biofilm of urinary tract catheters. Silicon catheter pieces were varnished with green silver nanoparticles (AgNPs) using Pistacia lentiscus mastic to prevent bacterial colonisation. Pomegranate rind extract was used to synthesize AgNPs. AgNPs were characterized by UV-Vis spectroscopy, X-ray crystallography, and transmission electron microscopy (TEM). Results obtained revealed that the size of most AgNPs ranged between 15-25 nm and they took crystallised metal and oxidised forms. The amounts of released silver ions from 1 cm pieces of catheters coated with AgNPs were estimated for five days and ranged between 10.82 and 4.8 µg. AgNPs coated catheters significantly inhibited the colonisation of catheters by antibiotic-resistant clinical Gram-positive (Staphylococcus epidermidis and Staphylococcus aureus) and Gram-negative (Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, and Pseudomonas aeruginosa) bacteria. AgNPs-varnish was more active against Gram-negative bacteria than Gram-positive bacteria. The significant inhibitory effect of coated catheters lasted for 72 h for both Gram-positive and Gram-negative bacteria. Varnishing catheters with AgNPs may help to prevent bacterial colonisation and infections.

7.
Rev Environ Health ; 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36635910

RESUMEN

Sulfur dioxide (SO2) is one of the most important gaseous air pollutants and the chemical index of sulfur oxides (SOx). SO2 is one of the six criteria pollutants in the air quality index (AQI). SO2 can be emitted by natural and anthropogenic sources. Although efforts have been made to reduce sulfur dioxide emissions worldwide, this pollutant and its adverse effects remain a major concern, especially in developing countries. The aim of this study was the investigated the effects of sulfur dioxide inhalation on human health. This narrative review was done based on the literature published from 2000 to 2022 through PubMed, Springer, Web of Science, Science Direct, and Google Scholar databases. In this study, was done screened first based on the abstract and Final assessment done based on the full text of the article. Finally, 38 articles were selected for inclusion in the study. The results of this study showed that sulfur dioxide has adverse health effects on the human respiratory, cardiovascular, and nervous systems and causes type 2 diabetes and non-accidental deaths. Although some evidence suggests that sulfur dioxide in given concentrations has no adverse health effect, its synergistic effects in combination with other air pollutants may be significant. Among the most important practical results of this study can be mentioned to increase the health awareness of the general public, help the politicians of the health sector in making decisions in the health field, creating awareness among polluting producing units and industries and efforts to reduce the emission of Sulfur dioxide.

8.
Sci Rep ; 11(1): 13215, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34168223

RESUMEN

In corn/maize, silks emerging from cobs capture pollen, and transmit resident sperm nuclei to eggs. There are > 20 million silks per U.S. maize acre. Fungal pathogens invade developing grain using silk channels, including Fusarium graminearum (Fg, temperate environments) and devastating carcinogen-producers (Africa/tropics). Fg contaminates cereal grains with mycotoxins, in particular Deoxynivalenol (DON), known for adverse health effects on humans and livestock. Fitness selection should promote defensive/healthy silks. Here, we report that maize silks, known as styles in other plants, possess complex and dynamic microbiomes at the critical pollen-fungal transmission interval (henceforth: transmitting style microbiome, TSM). Diverse maize genotypes were field-grown in two trial years. MiSeq 16S rRNA gene sequencing of 328 open-pollinated silk samples (healthy/Fg-infected) revealed that the TSM contains > 5000 taxa spanning the prokaryotic tree of life (47 phyla/1300 genera), including nitrogen-fixers. The TSM of silk tip tissue displayed seasonal responsiveness, but possessed a reproducible core of 7-11 MiSeq-amplicon sequence variants (ASVs) dominated by a single Pantoea MiSeq-taxon (15-26% of sequence-counts). Fg-infection collapsed TSM diversity and disturbed predicted metabolic functionality, but doubled overall microbiome size/counts, primarily by elevating 7-25 MiSeq-ASVs, suggestive of a selective microbiome response against infection. This study establishes the maize silk as a model for fundamental/applied research of plant reproductive microbiomes.


Asunto(s)
Microbiota/genética , Seda/metabolismo , Zea mays/microbiología , África , Fusarium/genética , Micotoxinas/genética , Polen/microbiología , Polinización/fisiología , ARN Ribosómico 16S/genética
9.
Microorganisms ; 9(6)2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34073963

RESUMEN

Soil hosts myriads of living organisms with the extensive potential to produce bioactive compounds. Bacteria are the major soil inhabitants that represent a rich reservoir for antibiotic production along with their role in recycling nutrients and maintenance of the soil ecosystem. Here, from 55 tested soil samples, we isolated and identified a novel antibiotic-producing bacterial strain with a phylogenetically closest match to Bacillus subtilis sp. based on BLASTN search of GenBank for the 16S rRNA gene sequence. We characterized this novel strain through microscopic, biochemical, and molecular techniques, combined with testing its potential antimicrobial activity. Chemical studies revealed that the antibiotic produced by this strain is a glycopeptide. It exhibited profound activity against both methicillin-resistant Staphylococcus aureus (MRSA) and Candida albicans. The antibiotic is optimally produced at 37 °C after 28 h of growth. The biocompatibility of the extracted antibiotic was tested over a wide range of factors including temperature, pH, surfactants, and metal salts. To confirm its therapeutic potential, a sterile solution of the antibiotic was tested in vivo against bacteria-induced keratitis in rats where significant healing activity was recorded. Hence, this soil Bacillus strain may lead to the development of novel antibiotics for the treatment of human pathogens.

10.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33917884

RESUMEN

Inflammasome targeting and controlling dysbiosis are promising therapeutic approaches to control ulcerative colitis. This report is the first to investigate the mechanisms underlying the coloprotective effects of rosuvastatin and Lactobacillus and their combined therapy on dextran sodium sulfate (DSS)-induced colitis in high-fat diet (HFD)-fed rats. Our results demonstrate the aggravation of intestinal inflammation as a consequence of an HFD following DSS administration. An association between dyslipidemia, LDL oxidation, CD36 expression, ROS generation, thioredoxin-interacting protein (TXNIP) upregulation, and NLRP3 inflammasome activation was demonstrated by DSS exposure in HFD-fed rats. We demonstrated that rosuvastatin/Lactobacillus significantly suppressed the DSS/HFD-induced increase in colon weight/length ratio, DAI, MDI, and myeloperoxidase, as well as corrected dysbiosis and improved histological characteristics. Additionally, caspase-1 activity and IL-1ß-driven pyroptotic activity was significantly reduced. Rosuvastatin/Lactobacillus showed prominent anti-inflammatory effects as revealed by the IL-10/IL-12 ratio and the levels of TNF-α and IL-6. These latter effects may be attributed to the inhibition of phosphorylation-induced activation of NF-κB and a concomitant reduction in the expression of NLRP3, pro-IL-1ß, and pro-IL-18. Furthermore, rosuvastatin/Lactobacillus reduced Ox-LDL-induced TXNIP and attenuated the inflammatory response by inhibiting NLRP3 inflammasome assembly. To conclude, rosuvastatin/Lactobacillus offers a safe and effective strategy for the management of ulcerative colitis.

11.
Microbiol Resour Announc ; 9(37)2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32912910

RESUMEN

We announce the draft genome sequences of six strains of Lactococcus lactis (EKM101L, EKM102L, EKM201L, EKM203L, EKM501L, and EKM502L). These candidate plant probiotics were isolated from surface-sterilized seeds of Cucumis sativus L. (cucumber), Cucumis melo L. (cantaloupe), and Cucurbita pepo var. turbinate (acorn squash). They display beneficial activities, including biocontrol.

12.
Microbiol Resour Announc ; 9(34)2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32816979

RESUMEN

Here, we report the draft genome sequences of seven Paenibacillus sp. strains (EKM202P, EKM205P, EKM206P, EKM207P, EKM208P, EKM211P, and EKM212P) that were previously isolated from cultivated surface-sterilized seeds of Cucumis melo L. (cantaloupe). These candidate Paenibacillus plant probiotics displayed in vitro growth-promoting traits and suppressive activity against root-associated fungal/oomycete pathogens.

13.
Microbiol Resour Announc ; 9(34)2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32816980

RESUMEN

Here, we announce the draft genome sequences of four endophytic bacilli isolated from surface-sterilized seeds of three cucurbit species, Bacillus sp. strains EKM417B and EKM420B (from Citrullus lanata [watermelon]) and EKM501B (from Cucurbita moschata [butternut squash]) and Paenibacillus sp. strain EKM301P (from Cucurbita pepo L. var. pepo L. [pumpkin]). These strains previously demonstrated biostimulant and biocontrol activities.

14.
Microbiol Resour Announc ; 9(32)2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32763934

RESUMEN

We report here the draft genome sequences of strains of Pantoea agglomerans (EKM10T, EKM20T, EKM21T, and EKM22T), Paenibacillus polymyxa (EKM10P and EKM11P), and Pseudomonas sp. strain EKM23D. These microbes were cultured from fresh seed biogels of Cucumis sativus L. (cucumber) and Cucumis melo L. (cantaloupe). The strains suppress the growth of soilborne fungal/oomycete phytopathogens in vitro.

15.
Microbiol Resour Announc ; 9(20)2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32409530

RESUMEN

Presented here is the draft genome sequence of Bacillus sp. strain EKM601B, which contains 4,199,360 bp in 73 contigs. This candidate endophyte was isolated from surface-sterilized dry seeds of Luffa acutangula (Chinese okra) and demonstrated diverse plant-beneficial functions and antagonism against soilborne pathogens in vitro.

16.
Microbiol Resour Announc ; 9(20)2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32409531

RESUMEN

Here, we report the draft genome sequences of Acinetobacter sp. strain EKM10A, Enterobacter hormaechei EKM10E, and Enterobacter hormaechei EKM11E, containing 3,978,352, 4,760,222, and 4,758,163 bp, respectively. These seed biogel-associated endophytes were previously isolated from the seed wash of Echinocystis lobata (wild cucumber) and tested in vitro for antagonism against soilborne fungal/oomycete pathogens.

17.
Front Microbiol ; 9: 995, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29923550

RESUMEN

[This corrects the article on p. 42 in vol. 9, PMID: 29459850.].

18.
Front Microbiol ; 9: 42, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29459850

RESUMEN

The cucurbit vegetables, including cucumbers, melons and pumpkins, have been cultivated for thousands of years without fungicides. However, their seed germination stage is prone to be infected by soil-borne fungal and oomycete pathogens. Endophytes are symbionts that reside inside plant tissues including seeds. Seed endophytes are founders of the juvenile plant microbiome and can promote host defense at seed germination and later stages. We previously isolated 169 bacterial endophytes associated with seeds of diverse cultivated cucurbits. We hypothesized that these endophytes can antagonize major fungal and oomycete pathogens. Here we tested the endophytes for in vitro antagonism (dual culture assays) against important soil-borne pathogens (Rhizoctonia solani, Fusarium graminearum, Phytophthora capsici, Pythium aphanideratum). The endophytes were also assayed in planta (leaf disk and detached leaf bioassays) for antagonism against a foliar pathogen of global importance, Podosphaera fuliginea, the causative agent of cucurbit powdery mildew. The endophytes were further tested in vitro for secretion of volatile organic compounds (VOCs) known to induce plant defense. Extracellular ribonuclease activity was also tested, as a subset of pathogenesis-related (PR) proteins of plant hosts implicated in suppression of fungal pathogens, displays ribonuclease activity. An unexpected majority of the endophytes (70%, 118/169) exhibited antagonism to the five phytopathogens, of which 68% (50/73) of in vitro antagonists belong to the genera Bacillus and Paenibacillus. All Lactococcus and Pantoea endophytes exhibited anti-oomycete activity. However, amongst the most effective inoculants against Podosphaera fuliginea were Pediococcus and Pantoea endophytes. Interestingly, 67% (113/169) of endophytes emitted host defense inducing VOCs (acetoin/diacetyl) and 62% (104/169) secreted extracellular ribonucleases in vitro, respectively. These results show that seeds of cultivated cucurbits package microbes with significant disease-suppression potential. As seeds can act as vectors for genetic transmission of endophytes across host generations, it is interesting to hypothesize whether humans, when selecting seeds of healthy hosts, may have inadvertently selected for disease-suppressing seed endophytes. As the majority of pathogen-suppressing endophytes belong to Bacillus and Paenibacillus, and since Bacilli are widely used as commercial biocontrol agents of vegetables, we propose that these agents are mimicking the ecological niche established by their endophytic cousins.

19.
BMC Microbiol ; 16(1): 131, 2016 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-27349509

RESUMEN

BACKGROUND: Endophytes are microbes that colonize plant internal tissues without causing disease. In particular, seed-associated endophytes may be vectors for founder microbes that establish the plant microbiome, which may subsequently contribute beneficial functions to their host plants including nutrient acquisition and promotion of plant growth. The Cucurbitaceae family of gourds (e.g., cucumbers, melons, pumpkin, squash), including its fruits and seeds, is widely consumed by humans. However, there is limited data concerning the taxonomy and functions of seed-associated endophytes across the Cucurbitaceae family. Here, bacteria from surface-sterilized seeds of 21 curcurbit varieties belonging to seven economically important species were cultured, classified using 16S rRNA gene sequencing, and subjected to eight in vitro functional tests. RESULTS: In total, 169 unique seed-associated bacterial strains were cultured from selected cucurbit seeds. Interestingly, nearly all strains belonged to only two phyla (Firmicutes, Proteobacteria) and only one class within each phyla (Bacilli, γ-proteobacteria, respectively). Bacillus constituted 50 % of all strains and spanned all tested cucurbit species. Paenibacillus was the next most common genus, while strains of Enterobacteriaceae and lactic acid bacteria were also cultured. Phylogenetic trees showed limited taxonomic clustering of strains by host species. Surprisingly, 33 % of strains produced the plant hormone, indole-3-acetic acid (auxin), known to stimulate the growth of fruits/gourds and nutrient-acquiring roots. The next most common nutrient acquisition traits in vitro were (in rank order): nitrogen fixation/N-scavenging, phosphate solubilisation, siderophore secretion, and production of ACC deaminase. Secretion of extracellular enzymes required for nutrient acquisition, endophyte colonization and/or community establishment were observed. Bacillus strains had the potential to contribute all tested functional traits to their hosts. CONCLUSION: The seeds of economically important cucurbits tested in this study have a culturable core microbiota consisting of Bacillus species with potential to contribute diverse nutrient acquisition and growth promotion activities to their hosts. These microbes may lead to novel seed inoculants to assist sustainable food production. Given that cucurbit seeds are consumed by traditional societies as a source of tryptophan, the precursor for auxin, we discuss the possibility that human selection inadvertently facilitated auxin-mediated increases in gourd size.


Asunto(s)
Bacterias/clasificación , Biodiversidad , Cucurbita/microbiología , Endófitos/clasificación , Filogenia , Plantas/microbiología , Semillas/microbiología , Bacterias/enzimología , Bacterias/genética , Bacterias/metabolismo , Secuencia de Bases , Liasas de Carbono-Carbono/biosíntesis , Celulasa/metabolismo , Clasificación , Productos Agrícolas/microbiología , Cucurbita/clasificación , Cucurbita/crecimiento & desarrollo , Dermatoglifia del ADN , ADN Bacteriano , Endófitos/enzimología , Endófitos/genética , Endófitos/metabolismo , Activación Enzimática , Frutas/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Microbiota , Fijación del Nitrógeno , Péptido Hidrolasas/metabolismo , Fosfatos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Poligalacturonasa/metabolismo , ARN Ribosómico 16S/genética , Semillas/crecimiento & desarrollo , Sideróforos/metabolismo , Solubilidad , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...