Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(21): 14815-14834, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38716105

RESUMEN

Layered double hydroxides (LDH) are promising 2D nanomaterials being investigated for several engineering and biomedical applications. In this work, quinary Zr Al Fe Co Ni LDH and its Al Fe Co Ni LDH quaternary and Fe Co Ni LDH tertiary roots were prepared and characterized. All samples showed an aggregated, layered morphology with zero surface charge and approximately 300 nm of hydrodynamic size. BET surface area of Al Fe Co Ni LDH showed a remarkable value of 143.25 m2 g-1 as opposed to 26.2 m2 g-1 and 45.4 m2 g-1 for Fe Co Ni LDH and Zr Al Fe Co Ni LDH, respectively. The antimicrobial activity of the prepared samples was assessed against the many pathogenic bacteria; Bacillus (B.) subtilis, Escherichia (E.) coli, Haemophilus (H.) influenza, Listeria (L.) monocytogenes, Staphylococcus (S.) aureus, and Streptococcus (St.) pneumonia, and six fungal species. Furthermore, anti-biofilm activity, growth curve assay, and effect of UV illumination were examined against various pathogenic microbes. Zr Al Fe Co Ni displayed remarkable antibacterial activity, as indicated by the lowest values of the minimum inhibitory concentrations (MIC) of 4-166.7 µg mL-1. Results for fungal strains varied in terms of their susceptibilities for the different samples tested. Zn Al Fe Co Ni was able to inhibit the biofilm formation of S. aureus (96.09%), E. coli (98.32%), and Candida (C.) albicans (95.93%). This study shown that certain LDH categories, particularly Zr Al Fe Co Ni, may be promising antibacterial agents against variety of pathogenic microorganisms that cause serious infections.

2.
Saudi J Biol Sci ; 31(1): 103879, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38090133

RESUMEN

Dromedary camel or Arabian camel (Camelus dromedarius) has great economic importance due to its milk and byproducts. Its milk has high nutrition along with healthy bacteria such as Lactic acid bacteria helpful in the fermentation process. The aim was to compare the probiotic bacteria from one week of lactating camel milk vs one year lactating camel milk to differentiate the potential probiotics. This study analyzed the microbiomes of one year lactating raw camel milk M1, M2 (A) (n = 10) and one week of lactating camel milk M3, M4 (B) (n = 10) through metagenomic analysis of 16S rRNA. In total, 276 species were found in two groups (A and B) and they shared 55 genes. Group B showed a higher number of species (2 2 0) than group A (56). The statistical data on functional annotations such as Card, COG, NOG and Swiss-prot revealed at least one or more contributions from this study sample database. The phylum Proteobacteria contributed largely up to 75 % in group B. In contrast, Ascomycota and Verrucomicrobia existed in higher quantity in group A than in group B and Firmicutes were slightly higher in group A than in group B. Actinobacteria were higher in group B whereas Bacteroidetes dominated in group A than group B. The potential probiotic bacteria found in camel milk including Enterococcus faecalis, Enterococcus faecium, Propionibacterium, Streptococcus thermophilus, Solibacillus silvestris and Akkermansia muciniphila. Despite the probiotic bacteria some pathogenic microbes also resided in the studied samples, hence it is strongly recommended proper sterilization before consumption. This proposed research is to get an efficient microbial consortium of beneficial bacteria and their functional roles.

3.
Medicina (Kaunas) ; 59(10)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37893449

RESUMEN

Background and Objectives: Milk is healthy and includes several vital nutrients and microbiomes. Probiotics in milk and their derivatives modulate the immune system, fight inflammation, and protect against numerous diseases. The present study aimed to isolate novel bacterial species with probiotic potential for neuroinflammation. Materials and Methods: Six milk samples were collected from lactating dairy cows. Bacterial isolates were obtained using standard methods and were evaluated based on probiotic characteristics such as the catalase test, hemolysis, acid/bile tolerance, cell adhesion, and hydrophobicity, as well as in vitro screening. Results: Nine morphologically diverse bacterial isolates were found in six different types of cow's milk. Among the isolates, PO3 displayed probiotic characteristics. PO3 was a Gram-positive rod cell that grew in an acidic (pH-2) salty medium containing bile salt and salinity (8% NaCl). PO3 also exhibited substantial hydrophobicity and cell adhesion. The sequencing comparison of the 16S rRNA genes revealed that PO3 was Lactococcus raffinolactis with a similarity score of 99.3%. Furthermore, PO3 was assessed for its neuroanti-inflammatory activity on human oligodendrocyte (HOG) cell lines using four different neuroimmune markers: signal transducer and activator of transcription (STAT-3), myelin basic protein (MBP), glial fibrillary acidic protein (GFAP), and GLAC in HOG cell lines induced by MOG. Unlike the rest of the evaluated neuroimmune markers, STAT-3 levels were elevated in the MOG-treated HOG cell lines compared to the untreated ones. The expression level of STAT-3 was attenuated in both PO3-MOG-treated and only PO3-treated cell lines. On the contrary, in PO3-treated cell lines, MBP, GFAP, and GLAC were significantly expressed at higher levels when compared with the MOG-treated cell lines. Conclusions: The findings reported in this article are to be used as a foundation for further in vivo research in order to pave the way for the possible use of probiotics in the treatment of neuroinflammatory diseases, including multiple sclerosis.


Asunto(s)
Lactancia , Probióticos , Animales , Bovinos , Femenino , Humanos , ARN Ribosómico 16S/genética , Probióticos/uso terapéutico , Oligodendroglía , Bacterias , Lactococcus/genética
4.
Microorganisms ; 11(10)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37894072

RESUMEN

Inflammation-related diseases are major causes of mortality and disability worldwide. This study aimed to identify and investigate probiotic bacteria that could be present in Al-Asfar Lake in Al-Ahsa City, Saudi Arabia to prevent the inflammatory responses of carrageenan-induced paw edema. In total, seven active strains were isolated, and three isolates (ASF-1, ASF-2, and ASF-3) exhibited a positive Gram stain and viable growth at 20% NaCl salinity; they also lacked catalase and hemolytic activities and had high levels of cell surface hydrophobicity (CSH). They also demonstrated potent antibacterial activity against Salmonella typhi and Staphylococcus aureus. These results revealed that ASF-2 had probiotic qualities, and it was selected for further research. ASF-2 demonstrated significant anti-inflammatory effects in an experimental model of carrageenan-induced paw edema; the experimental model showed decreased levels of pro-inflammatory markers, such as interleukin 6 (IL-6), interleukin 17 (IL-17), and transforming growth factor-ß (TGF-ß), and an increased level of an anti-inflammatory marker (interferon gamma (IFN-γ)). Animals in the control group saw a 45% decrease in edema when compared to mice in the carrageenan group. When comparing tissue damage and infiltration in the ASF-2-treated and non-treated mice, the histological examination of the sub-planar tissues of the hind leg revealed that the inflamed tissues had healed. The 16S rRNA sequencing method was utilized to establish that ASF-2 is, in fact, Enterococcus lactis with a 99.2% sequence similarity. These findings shed further light on ASF-2's potential as a biocompatible anti-inflammatory medication.

5.
Plants (Basel) ; 12(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37653860

RESUMEN

This study aimed to isolate, screen the plant-growth-enhancing features, and explore the whole-genome sequence of AZC66 isolated from the rhizosphere of Zygophyllum coccineum and determine its biostimulating effects on the growth of cowpea under greenhouse conditions. Salkowski reagent was used to measure AZC66's indole acetic acid production. AZC66's inorganic phosphate solubility on Pikovskaya agar was evaluated using tricalcium phosphate. The results indicated the ability of AZC66 to fix nitrogen, produce IAA (66.33 ± 0.44 µg mL-1), solubilize inorganic phosphate, and exhibit the activity of ACC deaminase (278.40 ± 21 mol -ketobutyrate mg-1 h-1). Cowpea's root and shoot dry weights were also significantly increased after in vitro inoculation with AZC66. The identity of AZC66 was confirmed as Priestia filamentosa, and 4840 genes were predicted in its genome. The gene sequences were compared against the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and the results showed that the top three pathways wherein the maximum number of genes are involved are signaling and cellular processes, genetic information processing, and carbohydrate metabolism. The genome sequencing of the strain AZC66 revealed a number of genes implicated in plant biostimulation activities such as nitrogen fixation (nifU), phytohormone synthesis (trpAB genes), phosphate solubilization (PhbCEF, pstABCS, and phoU), and siderophore formation (FbpA, feoAB, and fetB). The AZC66 genome contained numerous genes involved in nitrogen metabolism, nitrogen regulation, and the nitrate reduction pathway. The phenazine biosynthetic gene in AZC66 demonstrated biocontrol and soil survival properties. The trehalose synthesis genes in AZC66 may help plants resist osmotic and salt stress. The discovery of glycine betaine, cold shock, and heat shock protein genes demonstrated that AZC66 could withstand harsh conditions. AZC66 might be used to create robust, sustainable biological fertilizers for future agricultural use in Saudi Arabia. Furthermore, the predicted adaptable metabolic pathways might serve as the basis for potential biotechnological applications in agriculture and industry.

6.
Microorganisms ; 11(7)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37512891

RESUMEN

With the practice of a successful livestock industry using antibiotics, which has continued for more than five decades, researchers have long been interested in finding alternatives to antibiotics for poultry production. Probiotics can potentially reduce enteric diseases in livestock and enhance their productivity. The aim of this study was to isolate putative probiotics from camel milk and test them against Salmonella infection as well as host immune development. Thirteen different isolates were obtained from six different camel milk samples from dairy farms in Saudi Arabia. Three of the six isolates (PM1, PM2, PM3, PM4, PM5, and PM6) that showed Gram-positive characters reacted negatively to catalase and hemolytic assays. PM1, PM5, and PM6 showed significant nonpolar surface properties (>51% hydrophobic) and potent antimicrobial activities against avian pathogens, namely S. enterica, S. typhi, S. aureus, and E. coli. PM5 exhibited substantial probiotic traits; therefore, further focus was given to it. PM5 was identified as Bacillus subtilis OQ913924 by the 16S rRNA sequencing method and showed similarity matrix > 99%. An in vivo chicken model was used to access the health benefits of probiotics. After salmonella infection, the mucosal immune response was significantly increased (p < 0.01), and none of the challenge protocols caused mortality or clinical symptoms after infection in intestinal contents. S. enterica organ infiltration in the spleen, thymus, and small intestine was significantly reduced in the B. subtilis PM5-fed chickens. The S. enterica load in chicken feces was reduced from CFU 7.2 to 5.2 in oral-fed B. subtilis PM5-fed chickens. Probiotic-fed chickens showed buffered intestinal content and positively regulated the level of butyric acid (p < 0.05), and intestinal interleukin 1 beta (IL1-ß), C-reactive protein (CRP), and interferon gamma (IFN-γ) levels were reduced (p < 0.05). In addition, B. subtilis PM5 showed significant binding to peritoneal macrophages cells and inhibited S. enterica surface adhesion, indicating co-aggregation of B. subtilis PM5 in macrophage cells. It could be concluded that supplementation with probiotics can improve the growth performance of broilers and the quality of broiler chickens against enteric pathogens. The introduction of this probiotic into the commercial poultry feed market in the near future may assist in narrowing the gap that now exists between chicken breeding and consumer demand.

7.
Pharmaceuticals (Basel) ; 16(3)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36986457

RESUMEN

Multiple sclerosis is an autoimmune-mediated myelin damage disorder in the central nervous system that is widespread among neurological patients. It has been demonstrated that several genetic and epigenetic factors control autoimmune encephalomyelitis (EAE), a murine model of MS, through CD4+ T-cell population quantity. Alterations in the gut microbiota influence neuroprotectiveness via unexplored mechanisms. In this study, the ameliorative effect of Bacillus amyloliquefaciens fermented in camel milk (BEY) on an autoimmune-mediated neurodegenerative model using myelin oligodendrocyte glycoprotein/complete fraud adjuvant/pertussis toxin (MCP)-immunized C57BL6j mice is investigated. Anti-inflammatory activity was confirmed in the in vitro cell model, and inflammatory cytokines interleukins IL17 (from EAE 311 to BEY 227 pg/mL), IL6 (from EAE 103 to BEY 65 pg/mL), IFNγ (from EAE 423 to BEY 243 pg/mL) and TGFß (from EAE 74 to BEY 133 pg/mL) were significantly reduced in BEY-treated mice. The epigenetic factor miR-218-5P was identified and confirmed its mRNA target SOX-5 using in silico tools and expression techniques, suggesting SOX5/miR-218-5p could serve as an exclusive diagnostic marker for MS. Furthermore, BEY improved the short-chain fatty acids, in particular butyrate (from 0.57 to 0.85 µM) and caproic (from 0.64 to 1.33 µM) acids, in the MCP mouse group. BEY treatment significantly regulated the expression of inflammatory transcripts in EAE mice and upregulated neuroprotective markers such as neurexin (from 0.65- to 1.22-fold) (p < 0.05), vascular endothelial adhesion molecules (from 0.41- to 0.76-fold) and myelin-binding protein (from 0.46- to 0.89-fold) (p < 0.03). These findings suggest that BEY could be a promising clinical approach for the curative treatment of neurodegenerative diseases and could promote the use of probiotic food as medicine.

8.
Nutrients ; 15(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36771257

RESUMEN

Multiple sclerosis (MS), a distinct autoimmune neuroinflammatory disorder, affects millions of people worldwide, including Saudi Arabia. Changes in the gut microbiome are linked to the development of neuroinflammation via mechanisms that are not fully understood. Prebiotics and probiotics in camel milk that has been fermented have a variety of health benefits. In this study, Bacillus amyloliquefaciens-supplemented camel milk (BASY) was used to assess its preventive effect on MS symptoms in a myelin oligodendrocyte glycoprotein (MOG)-immunized C57BL6J mice model. To this end, MOG-induced experimental autoimmune encephalomyelitis (EAE) was established and the level of disease index, pathological scores, and anti-inflammatory markers of BASY-treated mice using macroscopic and microscopic examinations, qPCR and immunoblot were investigated. The results demonstrate that BASY significantly reduced the EAE disease index, increased total microbial load (2.5 fold), and improved the levels of the short-chain fatty acids propionic, butyric and caproic acids in the diseased mice group. Additionally, myeloperoxidase (MPO) proinflammatory cytokines (IL-1ß, IL-6, IL-17, TNF-α) and anti-inflammatory cytokines (TGF-ß) were regulated by BASY treatment. Significant suppression of MPO and VCAM levels were noticed in the BASY-treated group (from 168 to 111 µM and from 34 to 27 pg/mL, respectively), in comparison to the EAE group. BASY treatment significantly reduced the expression of inflammatory cytokines, inflammatory progression related transcripts, and inflammatory progression protein markers. In conclusion, BASY significantly reduced the symptoms of EAE mice and may be used to develop a probiotic-based diet to promote host gut health. The cumulative findings of this study confirm the significant neuroprotection of BASY in the MOG-induced mice model. They could also suggest a novel approach to the treatment of MS-associated disorders.


Asunto(s)
Bacillus amyloliquefaciens , Encefalomielitis Autoinmune Experimental , Leche , Probióticos , Animales , Ratones , Antiinflamatorios/uso terapéutico , Bacillus amyloliquefaciens/metabolismo , Camelus , Citocinas/metabolismo , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Ratones Endogámicos C57BL , Esclerosis Múltiple , Glicoproteína Mielina-Oligodendrócito , Enfermedades Neuroinflamatorias
9.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36651637

RESUMEN

Probiotics reduce the emergence of antibiotic resistance in the livestock industry. Chicken feces are reservoirs of beneficial microbiomes. The aim of this study was to isolate putative probiotics from the intestinal contents of broiler chickens. Five fecal samples were collected from two poultry farms in Al-Ahsa, Saudi Arabia. Of the 11 morphologically distinct isolates from chicken feces (CF) samples, five isolates displayed positive reactions to Gram staining, catalase, and oxidase tests, and reacted negatively to a hemolytic assay. The isolates CF1, CF2, CF3, CF8, and CF11 were selected for further analysis of probiotic characterization, gastric survival capacity, antibiotic susceptibility, and antimicrobial activity against poultry infected with Salmonella enterica. CF2 and CF11 showed the highest hydrophobic values (> 51% hydrophobic nature). CF1, CF2, and CF11 showed potent antimicrobial activities. The active isolate CF2 was identified as Enterococcus faecium by 16s rRNA sequencing and showed a genetic similarity of 99.1%. An in vivo study was conducted using a chicken model. Enterococcus faecium-fed chickens showed an improved body weight and a lower mortality rate (17-34%). Salmonella enterica colony-forming unit (CFU) invasion in the spleen and thymus was significantly reduced in the E. faecium-fed chickens. The fecal S. enterica load was reduced from CFU 6.8 to 3.9/g in oral-administered E. faecium-fed chickens. Enterococcus faecium-fed chickens showed increased levels (P < 0.01) of butyric acid and reduced levels (P < 0.01) of intestinal interleukin 1 beta, C-reactive protein, and interferon gamma levels compared to those in the S. enterica-infected chicken group. In addition, E. faecium showed significant binding to Caco-2 epithelial cells in vitro and inhibited S. enterica colonization, indicating co-aggregation of E. faecium in epithelial cells. These results revealed that an E. faecium formulation could prevent bacterial infection and improve the quality of broiler chickens.


Infectious bacterial contamination in broiler production is a food safety concern and can be transmitted to humans via contaminated meat and derived products. Minimizing bacterial infections using beneficial bacteria called probiotics can reduce the emergence of antibiotic resistance in the livestock industry. In this study, we focused on improving chicken health against Salmonella infections. Beneficial probiotics were isolated from broiler chicken carcasses. Antibiotic-sensitive and antimicrobially active beneficial bacteria were identified by DNA sequencing technology and identified as Enterococcus faecium. In a further study performed in a chicken model, E. faecium-fed chickens showed improved body weight and reduced death in Salmonella-infected chickens. The S. enterica load was also lower in these E. faecium-fed chickens. Enterococcus faecium-fed chickens showed increased levels of short-chain fatty acids and reduced interleukin 1 beta, C-reactive protein, and interferon gamma levels compared to those in the S. enterica-infected chicken group. These results revealed that an E. faecium formulation could prevent bacterial infection and improve the quality of broiler chickens.


Asunto(s)
Antiinfecciosos , Enterococcus faecium , Enfermedades de las Aves de Corral , Probióticos , Salmonelosis Animal , Animales , Humanos , Pollos/genética , Enterococcus faecium/genética , Proyectos Piloto , ARN Ribosómico 16S , Células CACO-2 , Aves de Corral , Salmonelosis Animal/prevención & control , Salmonelosis Animal/microbiología , Inmunidad , Heces/microbiología , Antibacterianos/farmacología , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/microbiología , Probióticos/farmacología
10.
Molecules ; 27(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36296681

RESUMEN

In this study, collagen hydrolysates (CHDs) were fabricated with honey-propolis wax (HPW), structurally modified as a sponge matrix, and experimentalized on wound healing in a mouse model. The scaffold was characterized by means of in vitro enzymatic degradation; in vitro HPW release; and in vivo wound-healing mouse model, wound-healing-specific RNA, transcripts, and protein markers. The functional activity of the HPW extracted from raw propolis was determined using total flavonoids, antioxidant scavenging assays, and anti-hemolytic principles. The results indicated that HPW had a high flavonoid content (20 µg/mL of wax) and antioxidant activities. The effective concentration (EC50) of HPW was estimated (28 mg/mL) and was then used in the subsequent in vivo experiments. Additionally, the dopped mixture of CHDs and HPW substantially enhanced the wound-healing process and regulated wound biochemical markers such as hexoseamine and melondialdehyde. CHDs- HPW upregulated the expression of growth factors including vascular endothelial growth factor (VEGF) (2.3-fold), fibroblast growth factor (FGF) and epidermal growth factor (EGF) (1.7-fold), and transforming growth factor-beta (TGF-ß) (3.1-fold), indicating their potential capacity to perform wound re-epithelialization and the loading of ground tissue. Pro-inflammatory markers IL-1 ß (51 pg/mL) and TNF-α (220 pg/mL) were significantly reduced in the CHD-HPW-treated wound. These interesting results were further confirmed using mRNA and protein growth factors from the wound, which enhanced the load of collagen-I in the wound site. In conclusion, CHDs-HPW exhibited a significant reduction in inflammation and inflammatory markers and helped to obtain a faster wound-healing process in a mouse model. The newly engineered biosponge could be developed as a promising therapeutic approach for the regeneration and repair of damaged human skin in the future.


Asunto(s)
Miel , Própolis , Ratones , Humanos , Animales , Cicatrización de Heridas , Factor A de Crecimiento Endotelial Vascular/genética , Interleucina-1beta , Factor de Crecimiento Epidérmico , Factor de Necrosis Tumoral alfa/genética , Antioxidantes , Colágeno/química , Péptidos , Modelos Animales de Enfermedad , Factor de Crecimiento Transformador beta/metabolismo , Factores de Crecimiento de Fibroblastos , Flavonoides , ARN Mensajero , ARN , Factores de Crecimiento Transformadores
11.
Nutrients ; 14(9)2022 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-35565934

RESUMEN

Fermented camel's milk has various health beneficial prebiotics and probiotics. This study aimed to evaluate the preventive efficacy of Bacillus amyloliquefaciens enriched camel milk (BEY) in 2-, 4- and 6-Trinitrobenzenesulfonic acid (TNBS)-induced colitis mice models. To this end, the immune modulatory effects of Bacillus amyloliquefaciens (BA) on TNF-α challenged HT29 colon cells were estimated using the cell proliferation and cytokines ELISA method. BEY was prepared using the incubation method and nutritional value was quantified by comparing it to commercial yogurt. Furthermore, TNBS-induced colitis was established and the level of disease index, pathological scores, and inflammatory markers of BEY-treated mice using macroscopic and microscopic examinations, qPCR and immunoblot were investigated. The results demonstrate that BA is non-toxic to HT29 colon cells and balanced the inflammatory cytokines. BEY reduced the colitis disease index, and improved the body weight and colon length of the TNBS-induced mice. Additionally, Myeloperoxidase (MPO) and pro-inflammatory cytokines (IL1ß, IL6, IL8 and TNF-α) were attenuated by BEY treatment. Moreover, the inflammatory progress mRNA and protein markers nuclear factor kappa B (NFκB), phosphatase and tensin homolog (PTEN), proliferating cell nuclear antigen (PCNA), cyclooxygenase-2 (COX-2) and occludin were significantly down-regulated by BEY treatment. Interestingly, significant suppression of PCNA was observed in colonic tissues using the immunohistochemical examination. Treatment with BEY increased the epigenetic (microRNA217) interactions with PCNA. In conclusion, the BEY clearly alleviated the colitis symptoms and in the future could be used to formulate a probiotic-based diet for the host gut health and control the inflammatory bowel syndrome in mammals.


Asunto(s)
Bacillus amyloliquefaciens , Colitis , Animales , Bacillus amyloliquefaciens/metabolismo , Camelus/metabolismo , Colitis/inducido químicamente , Colitis/prevención & control , Colon/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Ratones , Leche/metabolismo , Peroxidasa/metabolismo , Antígeno Nuclear de Célula en Proliferación , Ácido Trinitrobencenosulfónico/toxicidad , Factor de Necrosis Tumoral alfa/metabolismo
12.
Braz J Biol ; 84: e259100, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35588519

RESUMEN

The potential of Alhagi maurorum (Boiss.) aqueous extract (AME), used in traditional medicine for treatment or prevention of urolithiasis, to dissolve calcium oxalate stones in vitro was evaluated. In order to determine the litholytic potential of the extract, Calcium oxalate urinary stones were incubated during 12 weeks under continuous shaking in the presence of AME, Rowanix or NaCl 9 g/mL solution were used as controls. After the incubation period, the residual weight of the treated calculi was determined and the rate of dissolution was calculated. The medium pH variation was measured and changes in the calcium oxalate crystals at the stone surface were assessed using a scanning electron microscope (SEM). The results showed a significant dissolution effect for the extract on the kidney calculi during the experimentation period. At the end of the experiment, the percentages of calculi weight decrease were 41.23, 4.97 and 55.67% for the extract, NaCl solution and Rowanix, respectively. Gas Chromatography analysis revealed mainly the presence of the following phyto-compounds: Cyclopropenone, 2,3-diphenyl; 1-Nonadecanol; methyl-alpha-D-mannopyranoside; cis-9-Hexadecenal. These compounds unarguably play crucial roles in the health care system especially in cancer treatment and many other diseases including urolithiasis. The urinary stone dissolution, independent of medium pH, could be attributed to formation of complexes between the phytochemical compounds in the extract and the calculi.


Asunto(s)
Cálculos , Urolitiasis , Oxalato de Calcio/química , Oxalato de Calcio/orina , Humanos , Arabia Saudita , Cloruro de Sodio , Urolitiasis/orina
13.
Microbiol Resour Announc ; 10(27): e0034621, 2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34236217

RESUMEN

Ferrigenium kumadai An22T (= JCM 30584T = NBRC 112974T = ATCC TSD-51T) is a microaerophilic iron oxidizer isolated from paddy field soil and belongs to the family Gallionellaceae. Here, we report the complete genome sequence of F. kumadai An22T, which was obtained from the hybrid data of Oxford Nanopore long-read and Illumina short-read sequencing.

16.
J Photochem Photobiol B ; 204: 111786, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31982671

RESUMEN

Biological synthesis of nanoparticles is a growing research trend because it has numerous applications in pharmaceutics and biomedicine. The aim of this study was to obtain silver nanoparticles (AgNPs) from Bacillus sp. KFU36, a marine strain, and to assess its anticancer activity. The supernatant of Bacillus sp. KFU36 was supplemented with silver nitrate and the nanoparticles obtained were characterized spectrophotometrically and microscopically. A band of surface plasmon resonance was appeared at 430 nm, as revealed by UV-vis spectrophotometry. X-ray diffraction spectrum and Energy Dispersive Spectroscopy confirmed the crystalline and metallic structure of the AgNPs, respectively. Scanning electron microscopy revealed that the shape of the synthesized AgNPs were spherical and the size extended between 5 and 15 nm. The AgNPs were investigated for their potential anticancer effects on the cell viability, migration and apoptosis using MTT and wound-healing assays, and flow cytometry, respectively. The cytotoxic effects of these nanoparticles were evidenced by the decreasing the cell viability (as 15% at 50 µg/ml), cell density, adhesion capacity and losing the normal shape and size, and inducing the apoptosis on MCF-7 by 61% at 50 µg/ml. These findings confirm that the synthesized AgNPs exhibited superior anticancer activities and therefore could be exploited as a promising, cost-effective, and environmentally benign strategy in treating this disease in future.


Asunto(s)
Bacillus/química , Nanopartículas del Metal/química , Plata/química , Apoptosis/efectos de los fármacos , Bacillus/clasificación , Bacillus/genética , Neoplasias de la Mama , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Tecnología Química Verde , Humanos , Células MCF-7 , Nanopartículas del Metal/toxicidad , Filogenia
17.
Chemosphere ; 243: 125389, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31765893

RESUMEN

The present study is aimed to isolate and identify polycyclic aromatic hydrocarbons (PAHs) degrading bacteria from brackish water and to assess the biodegradation efficiency against low and high molecular weight PAHs. Among 15 isolates, the isolate designated as RM effectively degraded 100 mg/L of phenanthrene (Phe) (67.0%), pyrene (Pyr) (63.0%), naphthalene (NaP) (60.0%), and benzo [a]pyrene (BaP) (58.0%) after 7 days of incubation. Carbon sources, pH, and salinity of the culture medium were optimized to enhance the growth and PAHs biodegradation of the isolate RM. Sucrose was found to be an excellent carbon source to enhance PAHs biodegradation (Phe, 75.0; Pyr, 68.5; NaP, 62.5; and BaP, 59.5%). Furthermore, the isolate showed enhanced degradation at pH 7.0 and 4% salinity. The isolate RM was identified as Halomonas sp. based on partial 16S rDNA gene sequence analysis. The results indicated that the isolate RM (i.e., Halomonas sp.) has the potential to be used in remediation of oil spills in the marine ecosystem.


Asunto(s)
Bacterias/metabolismo , Biodegradación Ambiental , Halomonas/aislamiento & purificación , Hidrocarburos Policíclicos Aromáticos/metabolismo , Aguas Salinas , Benzo(a)pireno/metabolismo , Ecosistema , Halomonas/metabolismo , Peso Molecular , Naftalenos/metabolismo , Pirenos/metabolismo
18.
Chemosphere ; 243: 125327, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31733538

RESUMEN

The aim of the present study is to assess the influence of vermi-wash (VW) and citric acid (CA) on Sorghum bicolor growth and phytoaccumulation of lead (Pb) and nickel (Ni) contaminated soil. The biomass of the S. bicolor has been enhanced by the addition of VW (24 and 26%) and CA (11 and 9%) in Pb and Ni contaminated soil, respectively. The VW treatment showed enhanced shoot and root lengths and chlorophyll concentrations compared to CA. The shoot anatomic structure showed an accumulation of Pb and Ni were positively impacted by the amendment of VW and CA. In addition, VW treatment showed enhanced antioxidant enzymes activity (140, 125 and 152 U/mg of CAT, SOD and POD). Further, the plants grown in Pb contaminated soil treated with VW showed enhanced Rubisco activity of 1.49 U/ml, whereas, CA treatment showed 1.23 U/ml of Rubisco. It has been observed that the VW showed as a potential chelator as well as plant beneficial formulation for the enhanced phyto-remediation of Pb and Ni.


Asunto(s)
Biodegradación Ambiental , Plomo/metabolismo , Níquel/metabolismo , Contaminantes del Suelo/metabolismo , Sorghum/metabolismo , Antioxidantes , Biomasa , Quelantes , Clorofila , Ácido Cítrico/química , Plomo/análisis , Níquel/análisis , Suelo/química , Contaminantes del Suelo/análisis , Sorghum/crecimiento & desarrollo
19.
Saudi J Biol Sci ; 26(6): 1262-1267, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31516356

RESUMEN

In this study, one bacterial strain, ESM-1, was isolated from rhizosphere of Eruca sativa, growing in Al Hofouf, Saudia Arabia, after enrichment with methanol as a sole carbon and energy source in a batch culture. ESM-1 was characterized by a polyphasic approach. The strain was identified as Delftia acidovorans at similarity level of 99.9% of the 16S rRNA gene sequences. Results of the Biolog Gen III MicroPlate test system showed that strain ESM-1 reacted positively to 47 (50%) including the one-carbon compound formic acid, and partially positive to 6 (∼6.4%) out of the 94 different the traits examined. The total cellular fatty acids composition of the strain ESM-1 was (C16:1ω7c/C16:1ω6c) and C16:0) and matched that of Delftia acidovorans at a similarity index of 0.9, providing a robustness to the ESM-1 identification. Furthermore, ESM-1 displayed a complex polar lipid profile consisting of phosphatidylethanolamine, phosphatidylglycerol, glycolipid, aminolipid, in addition to uncharacterized lipids. The DNA G+C content of the strain was 66.6 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that the strain ESM1-1 was clearly clustered within the Delftia clade and constructed a monophyletic subcluster with Delftia acidovorans NBRC14950. The results addressed that ESM-1 is a facultative methylotrophic bacterium indigenous to Al Hofouf region and opens the door for potential biotechnological applications (e.g., bioremediation) of this strain, in future. Additionally, these findings assure that the total cellular fatty acid analysis and 16S rRNA gene are reliable tool for bacterial characterization and identification.

20.
Open Life Sci ; 14: 588-594, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33817196

RESUMEN

Agar is a polysaccharide that primarily constitutes the cell wall of red algae. It is a good source of carbon and energy for many microbes. In the present study, an agarolytic bacterium, UQAD-3, was obtained from the waters of Al-Uqair, the Arabian Gulf, Al-Ahsaa, Saudi Arabia. UQAD-3 exhibited agarolytic activity when grown on agar as the sole source of carbon and energy. The strain was identified as Pseudoalteromonas ruthenica based on comparative analysis of the 16S rRNA, with 99.6% similarity. This finding was further confirmed by phylogenetic analyses based on 16S rRNA gene sequences, which highlighted that UQAD-3 was assembled within the Pseudoalteromonas clade and constituted a monophyletic subcluster with P. ruthenica, KMM 300T. The strain was further characterised biochemically using the Biolog Gen III microtest system. UQAD-3 showed positive reactions to 16 (17%) of the 94 diverse traits assessed. Good growth was reported in 10% NaCl indicating its moderate halophilic nature. These observations indicate the agarolytic potential of the strain and opens new horizons for industrial applications in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA