Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(23): 16293-16299, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38769968

RESUMEN

The presence of dyes in wastewater poses a high risk to both human health and the environment due to their potential toxicity and ecological impacts. Zinc(ii) oxide is a low-cost, non-toxic material that can serve as a sustainable and effective solution to the global water pollution crisis. In this study, we propose a facile one-step synthesis of various ZnO structures by microwave irradiation. The primary goal of this study was to explore the morphology-dependent photocatalytic activity of various ZnO structures, as well as the impact of interfering anions on the Methylene Blue (MB) photodegradation under solar light illumination. Photocatalytic activity studies show that the sample denoted as 0.56 M-ZnO with a sheet-like structure has remarkable catalytic activity under solar light illumination, reaching ∼96.6% degradation of 30 mL MB solution (3 × 10-5 M) within 40 minutes. The BET specific surface area and band gap of the optimal 0.56 M-ZnO sample were observed to be 12.42 m2 g-1 and 2.89 eV, respectively. It was shown that the presence of anions like Cl-, NO3-, and HCO3- can reduce the catalytic activity of 0.56 M-ZnO structure to some extent, although more than 70% MB degradation can still be obtained under neutral pH conditions. The superior catalytic efficacy observed in the 0.56 M-ZnO photocatalyst can be attributed to its improved crystallinity, large surface area, and enhanced production of hydroxyl radicals. The low-cost synthesis, combined with high photocatalytic activity collectively underscores the efficiency and practical usability of produced ZnO photocatalysts for dye degradation.

2.
ACS Appl Mater Interfaces ; 15(40): 47541-47551, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37773641

RESUMEN

Laser conversion of metal-organic frameworks (MOFs) has recently emerged as a fast and low-energy consumptive approach to create scalable MOF derivatives for catalysis, energy, and optics. However, due to the virtually unlimited MOF structures and tunable laser parameters, the results of their interaction are unpredictable and poorly controlled. Here, we experimentally base a general approach to create nano- to centimeter-scale MOF derivatives with the desired nonlinear optical and catalytic properties. Five three- and two-dimensional MOFs, differing in chemical composition, topology, and thermal resistance, have been selected as precursors. Tuning the laser parameters (i.e., pulse duration from fs to ns and repetition rate from kHz to MHz), we switch between ultrafast nonthermal destruction and thermal decomposition of MOFs. We have established that regardless of the chemical composition and MOF topology, the tuning of the laser parameters allows obtaining a series of structurally different derivatives, and the transition from femtosecond to nanosecond laser regimes ensures the scaling of the derivatives from nano- to centimeter scales. Herein, the thermal resistance of MOFs affects the structure and chemical composition of the resulting derivatives. Finally, we outline the "laser parameters versus MOF structure" space, in which one can create the desired and scalable platforms with nonlinear optical properties from photoluminescence to light control and enhanced catalytic activity.

3.
Nanomaterials (Basel) ; 12(16)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36014747

RESUMEN

ZnO nanorods decorated with metal nanoparticles have sparked considerable interest in recent years thanks to their suitability for a wide range of applications, such as photocatalysis, photovoltaics, antibacterial activity, and sensing devices. In this study, we prepared and investigated the improved solar-light-assisted photocatalytic activity of ZnO nanorods (NRs) decorated with Ag nanoparticles (NPs) using a conventional rhodamine B (RB) dye as a model water pollutant. We showed that the presence of Ag NPs on the surface of ZnO NRs significantly increases the degradation rate of RB dye (~0.2432 min-1) when compared to bare ZnO NRs (~0.0431 min-1). The improved photocatalytic activity of ZnO-Ag was further experimentally tested using radical scavengers. The obtained results reveal that ˙OH and ˙O2- radicals are main active species involved in the RB dye photodegradation by ZnO-Ag NRs. It was concluded that efficient charge separation plays a major role in photocatalytic activity improvement.

4.
Nanomaterials (Basel) ; 10(6)2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-32521694

RESUMEN

Transparent titanium oxide thin films attract enormous attention from the scientific community because of their prominent properties, such as low-cost, chemical stability, and optical transparency in the visible region. In this study, we developed an easy and scalable solution-based process for the deposition of transparent TiOx thin films on glass substrates. We showed that the proposed method is also suitable for the fabrication of metal-doped TiOx thin films. As proof-of-the-concept, europium Eu(III) ions were introduced into TiOx film. A photoluminescence (PL) study revealed that Eu-doped TiOx thin films showed strong red luminescence associated with 5D0→7Fj relaxation transitions in Eu (III). We found that prepared TiOx thin films significantly reduce the transmittance of destructive UV radiation; a feature that can be useful for the protection of photovoltaic devices. In addition, transparent and luminescent TiOx thin films can be utilized for potential security labeling.

5.
Anal Sci ; 34(2): 183-187, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29434104

RESUMEN

We demonstrated that a cost-efficient, easy to prepare, hybrid SERS substrate-gold nanoparticles (AuNPs) on untreated Al foil (AlF) can effectively detect pharmaceuticals, such as paracetamol and clinical biomarkers, like urea in artificial urine. The limit of detection (LOD) for paracetamol on AuNPs on AlF is superior (0.1 vs. 1 mM ) to the LOD reported for SERS detection of paracetamol in the literature. For SERS detection of urea in urine, AuNPs on both Al foil and Au film performed much better than AuNPs on glass, in terms of the concentration range, linearity and LOD. However, assay on AuNPs on AlF showed a better semi-logarithmic trendline with R2 = 0.98 than an assay on AuNPs on Au film with R2 = 0.94. They have comparable sensitivity with LOD 0.024 and 0.017 M, respectively. The limit of quantification (LOQ) of the former is 0.026 M, which makes it sufficient for the quantification of urea in urine at both normal and pathophysiological (0.03 - 0.15 M) concentration.


Asunto(s)
Acetaminofén/análisis , Aluminio/química , Oro/química , Nanopartículas del Metal/química , Espectrometría Raman/métodos , Urea/química , Agua/química , Acetaminofén/química , Biomimética , Análisis Costo-Beneficio , Vidrio/química , Límite de Detección , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...