Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
1.
Medicine (Baltimore) ; 103(42): e40187, 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39432599

RESUMEN

After the control policies of the COVID-19 epidemic were lifted in China from December 5th, 2022, there was an increase in the demand for hemodialysis and continuous renal replacement therapy (CRRT) at our center, and patients experienced hypercoagulable blood states more frequently. This study aimed to investigate the effect of COVID-19 on extracorporeal coagulation during CRRT. All CRRT records were gathered from the Hemodialysis Center at our hospital from December 5th, 2022 to February 4th, 2023, and analyzed the incidence and risk factors associated with extracorporeal coagulation. COVID-19 substantially increased the likelihood of extracorporeal coagulation during CRRT. Venous pressure and transmembrane pressure were proportional to the severity of extracorporeal coagulation. Additionally, non-tunnel type conduit vascular access, and acute kidney injury had a positive correlation with the severity of coagulation. Blood tests demonstrated that COVID-19 altered 4 coagulation indices. Moreover, mitigation of coagulation can be achieved through increasing the dosage of low molecular weight heparin and administering regional citrate anticoagulation. Patients who fail anticoagulation may be switched to peritoneal dialysis. In conclusion, COVID-19 poses a heightened risk of extracorporeal coagulation during CRRT. This study underscores the importance of anticoagulant treatment in CRRT for infected patients with kidney failure and holds significant implications for clinical practice. In future, the epidemics of COVID-19 or any other pandemic, the metrics in this study can be referenced to determine coagulation risk, as well as relevant therapeutic practices may be considered.


Asunto(s)
Anticoagulantes , COVID-19 , Terapia de Reemplazo Renal Continuo , Humanos , Terapia de Reemplazo Renal Continuo/métodos , COVID-19/epidemiología , COVID-19/complicaciones , COVID-19/terapia , Masculino , Estudios Transversales , Persona de Mediana Edad , Femenino , Anticoagulantes/uso terapéutico , China/epidemiología , Circulación Extracorporea/métodos , SARS-CoV-2 , Lesión Renal Aguda/terapia , Lesión Renal Aguda/etiología , Lesión Renal Aguda/epidemiología , Anciano , Factores de Riesgo , Coagulación Sanguínea , Adulto
2.
Heliyon ; 10(16): e36189, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39253174

RESUMEN

This review underscores the fundamentals of MIP-CMs and systematically summarizes their synthetic strategies and applications, and potential developments. MIP-CMs are widely acclaimed for their versatility, finding applications in separation, filtration, detection, and trace analysis, as well as serving as scaffolds in a range of analytical, biomedical and industrial contexts. Also characterized by extraordinary selectivity, remarkable sensitivity, and outstanding capability to bind molecules, those membranes are also cost-effective, highly stable, and configurable in terms of recognition and, therefore, inalienable in various application fields. Issues relating to the potential future for the paper are discussed in the last section with the focus on the improvement of resource practical application across different areas. Hence, this review can be seen as a kind of cookbook for the design and fabrication of MIP-CMs with an intention to expand the scope of their application.

3.
Front Cardiovasc Med ; 11: 1408574, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39314764

RESUMEN

Myocarditis is a cardiovascular disease characterised by inflammation of the heart muscle which can lead to heart failure. There is heterogeneity in the mode of presentation, underlying aetiologies, and clinical outcome with impact on a wide range of age groups which lead to diagnostic challenges. Cardiovascular magnetic resonance (CMR) is the preferred imaging modality in the diagnostic work-up of those with acute myocarditis. There is a need for systematic analytical approaches to improve diagnosis. Artificial intelligence (AI) and machine learning (ML) are increasingly used in CMR and has been shown to match human diagnostic performance in multiple disease categories. In this review article, we will describe the role of CMR in the diagnosis of acute myocarditis followed by a literature review on the applications of AI and ML to diagnose acute myocarditis. Only a few papers were identified with limitations in cases and control size and a lack of detail regarding cohort characteristics in addition to the absence of relevant cardiovascular disease controls. Furthermore, often CMR datasets did not include contemporary tissue characterisation parameters such as T1 and T2 mapping techniques, which are central to the diagnosis of acute myocarditis. Future work may include the use of explainability tools to enhance our confidence and understanding of the machine learning models with large, better characterised cohorts and clinical context improving the diagnosis of acute myocarditis.

4.
Food Chem ; 463(Pt 4): 141424, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39348765

RESUMEN

Medicinal food homologous (MFH) substances not only provide nutrition but also serve as a traditional means to overcome many health issues. Authentication of these products verifies their efficacity and assures consumers of a genuine product. In this review paper, we focus the determination of MFH authenticity including geographical identification and adulteration detection using mass spectrometry (liquid and gas chromatography) based metabolites and inorganic constituents (muti-elements and stable isotopes). The application of these techniques to determine product identification characteristics combined with chemometrics are discussed, along with the limitations of these techniques. Multi-elements, stable isotopes, and metabolite analysis are shown to provide an effective combination of techniques to resolve the origin of various MFH products. Most organic compounds from MFH products are identified using chromatographic separation techniques (HPLC, GC) combined with different detection methods. Chemometric analysis of organic and inorganic fingerprints offers a robust method to detect and classify mislabeled and suspected fraudulent samples of different MFH products.

5.
MedComm (2020) ; 5(9): e703, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39247619

RESUMEN

Aortic aneurysm (AA) is an aortic disease with a high mortality rate, and other than surgery no effective preventive or therapeutic treatment have been developed. The renin-angiotensin system (RAS) is an important endocrine system that regulates vascular health. The ACE2/Ang-(1-7)/MasR axis can antagonize the adverse effects of the activation of the ACE/Ang II/AT1R axis on vascular dysfunction, atherosclerosis, and the development of aneurysms, thus providing an important therapeutic target for the prevention and treatment of AA. However, products targeting the Ang-(1-7)/MasR pathway still lack clinical validation. This review will outline the epidemiology of AA, including thoracic, abdominal, and thoracoabdominal AA, as well as current diagnostic and treatment strategies. Due to the highest incidence and most extensive research on abdominal AA (AAA), we will focus on AAA to explain the role of the RAS in its development, the protective function of Ang-(1-7)/MasR, and the mechanisms involved. We will also describe the roles of agonists and antagonists, suggest improvements in engineering and drug delivery, and provide evidence for Ang-(1-7)/MasR's clinical potential, discussing risks and solutions for clinical use. This study will enhance our understanding of AA and offer new possibilities and promising targets for therapeutic intervention.

6.
Curr Med Chem ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39253929

RESUMEN

BACKGROUND: Colorectal cancer (CRC) stands as the third most widespread cancer worldwide in both men and women, witnessing a concerning rise, especially in younger demographics. Abnormal activation of the Non-Receptor Tyrosine Kinase c-Src has been linked to the advancement of several human cancers, including colorectal, breast, lung, and pancreatic ones. The interaction between c-Src and Hexokinase 2 (HK2) triggers enzyme phosphorylation, significantly boosting glycolysis, and ultimately contributing to the development of CRC. OBJECTIVES: The objectives of this study are to examine the influence of newly identified mutations on the interaction between c-Src and the HK2 enzyme and to discover potent phytocompounds capable of disrupting this interaction. METHODS: In this study, we utilized molecular docking to check the effect of the identified mutation on the binding of c-Src with HK2. Virtual drug screening, MD simulation, and binding free energy were employed to identify potent drugs against the binding interface of c-Src and HK2. RESULTS: Among these mutations, six (W151C, L272P, A296S, A330D, R391H, and P434A) were observed to significantly disrupt the stability of the c-Src structure. Additionally, through molecular docking analysis, we demonstrated that the mutant forms of c-Src exhibited high binding affinities with HK2. The wildtype showed a docking score of -271.80 kcal/mol, while the mutants displayed scores of -280.77 kcal/mol, -369.01 kcal/mol, -324.41 kcal/mol, -362.18 kcal/mol, 266.77 kcal/mol, and -243.28 kcal/mol for W151C, L272P, A296S, A330D, R391H, and P434A respectively. Furthermore, we identified five lead phytocompounds showing strong potential to impede the binding of c-Src with HK2 enzyme, essential for colon cancer progression. These compounds exhibit robust bonding with c-Src with docking scores of -7.37 kcal/mol, -7.26 kcal/mol, -6.88 kcal/mol, -6.81 kcal/mol, and -6.73 kcal/mol. Moreover, these compounds demonstrate dynamic stability, structural compactness, and the lowest residual fluctuation during MD simulation. The binding free energies for the top five hits (-42.44±0.28 kcal/mol, -28.31±0.25 kcal/mol, -34.95±0.44 kcal/mol, -38.92±0.25 kcal/mol, and -30.34±0.27 kcal/mol), further affirm the strong interaction of these drugs with c-Src which might impede the cascade of events that drive the progression of colon cancer. CONCLUSION: Our findings serve as a promising foundation, paving the way for future discoveries in the fight against colorectal cancer.

7.
Carbohydr Polym ; 346: 122619, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39245496

RESUMEN

This review article explores the developments and applications in agar-based composites (ABCs), emphasizing various constituents such as metals, clay/ceramic, graphene, and polymers across diversified fields like wastewater treatment, drug delivery, food packaging, the energy sector, biomedical engineering, bioplastics, agriculture, and cosmetics. The focus is on agar as a sustainable and versatile biodegradable polysaccharide, highlighting research that has advanced the technology of ABCs. A bibliometric analysis is conducted using the Web of Science database, covering publications from January 2020 to March 2024, processed through VOSviewer Software Version 1.6.2. This analysis assesses evolving trends and scopes in the literature, visualizing co-words and themes that underscore the growing importance and potential of ABCs in various applications. This review paper contributes by showcasing the existing state-of-the-art knowledge and motivating further development in this promising field.


Asunto(s)
Agar , Embalaje de Alimentos , Agar/química , Humanos , Sistemas de Liberación de Medicamentos , Arcilla/química , Materiales Biocompatibles/química , Grafito/química , Cerámica/química
8.
Org Biomol Chem ; 22(36): 7395-7410, 2024 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-39177253

RESUMEN

A simple and direct synthesis of 2,6-diiodophenylethanol building blocks through highly regioselective metalation (MIE)/oxirane SN2-type ring opening of 1,2,3-triiodobenzene is described. A significant impact of the nature of the R1 group on the reactivity of the reaction was discovered but not in terms of site-selectivity. The MIE quenching step is easily controlled by the use of slow-reacting electrophiles "oxiranes" providing solely the ortho-diiodinated homobenzylic alcohol derivatives (internal products) in excellent site-selectivity and with stereoretention. The reaction proceeded without any additives to activate the oxiranes and tolerated a wide range of substrates. The reaction of electron-deficient 1,2,3-triiodoarene systems and neutral oxiranes under the optimized conditions provided the highest isolated yields. The reaction is facile, scalable, efficient, general in scope, and generates handy precursors for further chemical manipulation. In silico interaction analysis revealed that compounds 7a, 7p, 7t and 7z established favourable interactions with the receptors IDO and TDO. Moreover, the molecular simulation results revealed stable dynamics, minimal internal fluctuations, tighter packing and more favourable dynamic features. Furthermore, the 7a-IDO reported a TBE of -26.22 ± 0.24 kcal mol-1, 7t-TDO reported a TBE of -46.66 ± 0.27 kcal mol-1, 7p-TDO reported a TBE of -48.02 ± 0.29 kcal mol-1 while 7z-TDO reported a TBE of -48.51 ± 0.28 kcal mol-1. This shows that these compounds potentially interact with IDO and TDO and consequently cause the inhibition of these targets. Moreover, the BFE results also revealed that this combination suggests that the gas-phase interactions between the components are favorable, but the solvation of the system is unfavorable. In the context of binding, it further means that the protein and ligand have attractive forces when in close proximity as seen in the gas phase, but when solvated, the system experiences an increase in free energy due to interactions with the solvent. This further implies that the binding might be enthalpically favorable due to favorable gas-phase interactions but entropically unfavorable due to unfavorable solvation effects. Our analysis shows that our designed compounds have unmatched pharmacological potential, far surpassing previously reported compounds. This highlights the innovative nature of these derivatives and sets a new benchmark in IDO and TDO drug discovery, indicating their significant potential as effective anticancer inhibitors.


Asunto(s)
Antineoplásicos , Indolamina-Pirrol 2,3,-Dioxigenasa , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Humanos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Estereoisomerismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
9.
Int Immunopharmacol ; 141: 112833, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39153303

RESUMEN

Mycoplasma pulmonis (M. pulmonis) is an emerging respiratory infection commonly linked to prostate cancer, and it is classified under the group of mycoplasmas. Improved management of mycoplasma infections is essential due to the frequent ineffectiveness of current antibiotic treatments in completely eliminating these pathogens from the host. The objective of this study is to design and construct effective and protective vaccines guided by structural proteomics and machine learning algorithms to provide protection against the M. pulmonis infection. Through a thorough examination of the entire proteome of M. pulmonis, four specific targets Membrane protein P80, Lipoprotein, Uncharacterized protein and GGDEF domain-containing protein have been identified as appropriate for designing a vaccine. The proteins underwent mapping of cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL) (IFN)-γ ±, and B-cell epitopes using artificial and recurrent neural networks. The design involved the creation of mRNA and peptide-based vaccine, which consisted of 8 CTL epitopes associated by GGS linkers, 7 HTL (IFN-positive) epitopes, and 8 B-cell epitopes joined by GPGPG linkers. The vaccine designed exhibit antigenic behavior, non-allergenic qualities, and exceptional physicochemical attributes. Structural modeling revealed that correct folding is crucial for optimal functioning. The coupling of the MEVC and Toll-like Receptors (TLR)1, TLR2, and TLR6 was examined through molecular docking experiments. This was followed by molecular simulation investigations, which included binding free energy estimations. The results indicated that the dynamics of the interaction were stable, and the binding was strong. In silico cloning and optimization analysis revealed an optimized sequence with a GC content of 49.776 % and a CAI of 0.982. The immunological simulation results showed strong immune responses, with elevated levels of active and plasma B-cells, regulatory T-cells, HTL, and CTL in both IgM+IgG and secondary immune responses. The antigen was completely cleared by the 50th day. This study lays the foundation for creating a potent and secure vaccine candidate to combat the newly identified M. pulmonis infection in people.


Asunto(s)
Vacunas Bacterianas , Epítopos de Linfocito B , Epítopos de Linfocito T , Aprendizaje Automático , Infecciones por Mycoplasma , Proteómica , Vacunas Bacterianas/inmunología , Infecciones por Mycoplasma/prevención & control , Infecciones por Mycoplasma/inmunología , Proteómica/métodos , Animales , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito B/inmunología , Linfocitos T Citotóxicos/inmunología , Humanos , Proteínas Bacterianas/inmunología , Ratones , Simulación del Acoplamiento Molecular , Mapeo Epitopo/métodos , Antígenos Bacterianos/inmunología
10.
ACS Omega ; 9(32): 34220-34242, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39157131

RESUMEN

Perovskites are bringing revolutionization in a various fields due to their exceptional properties and crystalline structure. Most specifically, halide perovskites (HPs), lead-free halide perovskites (LFHPs), and halide perovskite quantum dots (HPs QDs) are becoming hotspots due to their unique optoelectronic properties, low cost, and simple processing. HPs QDs, in particular, have excellent photovoltaic and optoelectronic applications because of their tunable emission, high photoluminescence quantum yield (PLQY), effective charge separation, and low cost. However, practical applications of the HPs QDs family have some limitations such as degradation, instability, and deep trap states within the bandgap, structural inflexibility, scalability, inconsistent reproducibility, and environmental concerns, which can be covered by encapsulating HPs QDs into porous materials like metal-organic frameworks (MOFs) or covalent-organic frameworks (COFs) that offer protection, prevention of aggregation, tunable optical properties, flexibility in structure, enhanced biocompatibility, improved stability under harsh conditions, consistency in production quality, and efficient charge separation. These advantages of MOFs-COFs help HPs QDs harness their full potential for various applications. This review mainly consists of three parts. The first portion discusses the perovskites, halide perovskites, lead-free perovskites, and halide perovskite quantum dots. In the second portion, we explore MOFs and COFs. In the third portion, particular emphasis is given to a thorough evaluation of the development of HPs QDs@MOFs-COFs based materials for comprehensive investigations for next-generation materials intended for diverse technological applications, such as CO2 conversion, pollutant degradation, hydrogen generation, batteries, gas sensing, and solar cells. Finally, this review will open a new gateway for the synthesis of perovskite-based quantum dots.

12.
PLoS One ; 19(7): e0305417, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39042625

RESUMEN

Hantaviruses are single-stranded RNA viruses belonging to the family Bunyaviridae that causes hantavirus cardiopulmonary syndrome (HCPS) and hemorrhagic fever with renal syndrome (HFRS) worldwide. Currently, there is no effective vaccination or therapy available for the treatment of hantavirus, hence there is a dire need for research to formulate therapeutics for the disease. Computational vaccine designing is currently a highly accurate, time and cost-effective approach for designing effective vaccines against different diseases. In the current study, we shortlisted highly antigenic proteins i.e., envelope, and nucleoprotein from the proteome of hantavirus and subjected to the selection of highly antigenic epitopes to design of next-generation multi-epitope vaccine constructs. A highly antigenic and stable adjuvant was attached to the immune epitopes (T-cell, B-cell, and HTL) to design Env-Vac, NP-Vac, and Com-Vac constructs, which exhibit stronger antigenic, non-allergenic, and favorable physiochemical properties. Moreover, the 3D structures were predicted and docking analysis revealed robust interactions with the human Toll-like receptor 3 (TLR3) to initiate the immune cascade. The total free energy calculated for Env-Vac, NP-Vac, and Com-Vac was -50.02 kcal/mol, -24.13 kcal/mol, and -62.30 kcal/mol, respectively. In silico cloning, results demonstrated a CAI value for the Env-Vac, NP-Vac, and Com-Vac of 0.957, 0.954, and 0.956, respectively, while their corresponding GC contents were 65.1%, 64.0%, and 63.6%. In addition, the immune simulation results from three doses of shots released significant levels of IgG, IgM, interleukins, and cytokines, as well as antigen clearance over time, after receiving the vaccine and two booster doses. Our vaccines against Hantavirus were found to be highly immunogenic, inducing a robust immune response that demands experimental validation for clinical usage.


Asunto(s)
Orthohantavirus , Vacunas Virales , Orthohantavirus/inmunología , Vacunas Virales/inmunología , Humanos , Vacunología/métodos , Simulación del Acoplamiento Molecular , Simulación por Computador , Epítopos/inmunología , Epítopos/química , Modelos Moleculares , Infecciones por Hantavirus/prevención & control , Infecciones por Hantavirus/inmunología
13.
Microb Pathog ; 194: 106777, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39002657

RESUMEN

Francisella tularensis can cause severe disease in humans via the respiratory or cutaneous routes and a case fatality ratio of up to 10 % is reported due to lack of proper antibiotic treatment, while F. novicida causes disease in severely immunocompromised individuals. Efforts are needed to develop effective vaccine candidates against Francisella species. Thus, in this study, a systematic computational work frame was used to deeply investigate the whole proteome of Francisella novicida containing 1728 proteins to develop vaccine against F. tularensis and related species. Whole-proteome analysis revealed that four proteins including (A0Q492) (A0Q7Y4), (A0Q4N4), and (A0Q5D9) are the suitable vaccine targets after the removal of homologous, paralogous and prediction of subcellular localization. These proteins were used to predict the T cell, B cell, and HTL epitopes which were joined together through suitable linkers to construct a multi-epitopes vaccine (MEVC). The MEVC was found to be highly immunogenic and non-allergenic while the physiochemical properties revealed the feasible expression and purification. Moreover, the molecular interaction of MEVC with TLR2, molecular simulation, and binding free energy analyses further validated the immune potential of the construct. According to Jcat analysis, the refined sequence demonstrates GC contents of 41.48 % and a CAI value of 1. The in-silico cloning and optimization process ensured compatibility with host codon usage, thereby facilitating efficient expression. Computational immune simulation studies underscored the capacity of MEVC to induce both primary and secondary immune responses. The conservation analysis further revealed that the selected epitopes exhibit 100 % conservation across different species and thus provides wider protection against Francisella.


Asunto(s)
Inmunidad Adaptativa , Vacunas Bacterianas , Francisella tularensis , Proteómica , Tularemia , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/genética , Francisella tularensis/inmunología , Francisella tularensis/genética , Tularemia/prevención & control , Tularemia/inmunología , Tularemia/microbiología , Humanos , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteoma , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/genética , Epítopos/inmunología , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito B/genética , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Desarrollo de Vacunas , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/genética
14.
Molecules ; 29(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38930855

RESUMEN

Zero-dimensional graphene quantum dots (GQDs) present unique optoelectronic properties in the large-spectrum range from UV to visible. However, the origin of luminescence in GQDs is still a debatable question. Therefore, the present work investigates the features of trap-mediated and edge-state-functionalized group-associated luminescence enhancement of GQDs. The attached functional groups' involvement in the upsurge of photoluminescence has been discussed theoretically as well as experimentally. In addition, the role of the aromatic ring, the functional group attached, and their positions of attachment to the aromatic ring to tune the emission wavelength and Raman modes have been elucidated theoretically as well as experimentally. We found that in the case of the -OH group attached outside of the aromatic ring, the long-range π hybridization dominates, which suggests that the emission from this model can be dictated by long-range π hybridization. In particular, we found that oxygen-containing functional groups attached outside of the aromatic ring are the main source of the luminescence signature in GQDs. Furthermore, density functional theory (DFT) indicates that the -OH functional group attached outside of the aromatic ring perfectly matched with our experimental results, as the experimental bandgap (2.407 eV) is comparable with the theoretical simulated bandgap (2.399 eV) of the -OH group attached outside of the aromatic ring.

15.
J Infect Public Health ; 17(7): 102448, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38815532

RESUMEN

BACKGROUND: Influenza A virus causes severe respiratory illnesses, especially in developing nations where most child deaths under 5 occur due to lower respiratory tract infections. The RIG-I protein acts as a sensor for viral dsRNA, triggering interferon production through K63-linked poly-ubiquitin chains synthesized by TRIM25. However, the influenza A virus's NS1 protein hinders this process by binding to TRIM25, disrupting its association with RIG-I and preventing downstream interferon signalling, contributing to the virus's evasion of the immune response. METHODS: In our study we used structural-based drug designing, molecular simulation, and binding free energy approaches to identify the potent phytocompounds from various natural product databases (>100,000 compounds) able to inhibit the binding of NS1 with the TRIM25. RESULTS: The molecular screening identified EA-8411902 and EA-19951545 from East African Natural Products Database, NA-390261 and NA-71 from North African Natural Products Database, SA-65230 and SA- 4477104 from South African Natural Compounds Database, NEA- 361 and NEA- 4524784 from North-East African Natural Products Database, TCM-4444713 and TCM-6056 from Traditional Chinese Medicines Database as top hits. The molecular docking and binding free energies results revealed that these compounds have high affinity with the specific active site residues (Leu95, Ser99, and Tyr89) involved in the interaction with TRIM25. Additionally, analysis of structural dynamics, binding free energy, and dissociation constants demonstrates a notably stronger binding affinity of these compounds with the NS1 protein. Moreover, all selected compounds exhibit exceptional ADMET properties, including high water solubility, gastrointestinal absorption, and an absence of hepatotoxicity, while adhering to Lipinski's rule. CONCLUSION: Our molecular simulation findings highlight that the identified compounds demonstrate high affinity for specific active site residues involved in the NS1-TRIM25 interaction, exhibit exceptional ADMET properties, and adhere to drug-likeness criteria, thus presenting promising candidates for further development as antiviral agents against influenza A virus infections.


Asunto(s)
Simulación del Acoplamiento Molecular , Unión Proteica , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Proteínas no Estructurales Virales , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/química , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/química , Antivirales/farmacología , Antivirales/química , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/inmunología , Fitoquímicos/farmacología , Fitoquímicos/química , Diseño de Fármacos , Evaluación Preclínica de Medicamentos
16.
BMC Chem ; 18(1): 99, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734638

RESUMEN

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has led to over six million deaths worldwide. In human immune system, the type 1 interferon (IFN) pathway plays a crucial role in fighting viral infections. However, the ORF8 protein of the virus evade the immune system by interacting with IRF3, hindering its nuclear translocation and consequently downregulate the type I IFN signaling pathway. To block the binding of ORF8-IRF3 and inhibit viral pathogenesis a quick discovery of an inhibitor molecule is needed. Therefore, in the present study, the interface between the ORF8 and IRF3 was targeted on a high-affinity carbon nanotube by using computational tools. After analysis of 62 carbon nanotubes by multiple docking with the induced fit model, the top five compounds with high docking scores of - 7.94 kcal/mol, - 7.92 kcal/mol, - 7.28 kcal/mol, - 7.19 kcal/mol and - 7.09 kcal/mol (top hit1-5) were found to have inhibitory activity against the ORF8-IRF3 complex. Molecular dynamics analysis of the complexes revealed the high compactness of residues, stable binding, and strong hydrogen binding network among the ORF8-nanotubes complexes. Moreover, the total binding free energy for top hit1-5 was calculated to be - 43.21 ± 0.90 kcal/mol, - 41.17 ± 0.99 kcal/mol, - 48.85 ± 0.62 kcal/mol, - 43.49 ± 0.77 kcal/mol, and - 31.18 ± 0.78 kcal/mol respectively. These results strongly suggest that the identified top five nanotubes (hit1-5) possess significant potential for advancing and exploring innovative drug therapies. This underscores their suitability for subsequent in vivo and in vitro experiments, marking them as promising candidates worthy of further investigation.

17.
J Pak Med Assoc ; 74(5): 852-856, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38783429

RESUMEN

Objective: To determine the expression of podoplanin, and to correlate it with histopathological grades in oral epithelial dysplasia and oral squamous cell carcinoma cases. METHODS: The retrospective, analytical, cross-sectional study was conducted at the City Laboratory, Peshawar, Pakistan, and comprised specimen block data of histologically diagnosed cases of oral benign lesions, dysplastic lesions and oral squamous cell carcinoma from January 2017 to August 2021. Two sections (4um) were cut from each specimen block for Haematoxylin and Eosin staining and immunohistochemistry. The slides were re-evaluated by two pathologists for confirmation of the diagnosis, and podoplanin marker was applied to cases selected using immunohistochemistry. Data was analysed using SPSS 22. RESULTS: Of the 80 cases identified, 68(85%) were analysed. There were 20(29.4%) benign cases; 11(55%) females and 9(45%) males with mean age 39.90±16.23 years, 20(29.4%) oral dysplastic cases; 14(70%) males and 6(30%) females with mean age 57.75±12.02 years, and 28(41.2%) oral squamous cell carcinoma cases; 17(61%) males and 11(39%) females with mean age 50.55±14.80 years. Podoplanin expression in oral epithelial dysplasia cases was significant (p=0.028), while it was not significant in the other 2 groups (p>0.05). CONCLUSIONS: Podoplanin when used along with histopathological evaluation could aid as an adjuvant technique in the diagnosis and grading of oral epithelial dysplasia.


Asunto(s)
Glicoproteínas de Membrana , Neoplasias de la Boca , Humanos , Femenino , Masculino , Glicoproteínas de Membrana/metabolismo , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Persona de Mediana Edad , Adulto , Estudios Transversales , Estudios Retrospectivos , Anciano , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Lesiones Precancerosas/patología , Lesiones Precancerosas/metabolismo , Pakistán/epidemiología , Adulto Joven , Mucosa Bucal/patología , Mucosa Bucal/metabolismo , Clasificación del Tumor , Biomarcadores de Tumor/metabolismo , Inmunohistoquímica
18.
ACS Omega ; 9(17): 19461-19480, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38708276

RESUMEN

Nile blue (NB) dye is a highly toxic substance that when discharged into sewage presents a significant risk to the environment and human health. Carbon-based nanomaterials, such as graphene oxide (GO), reduced graphene oxide (rGO), and their nanocomposites, offer considerable potential for eliminating hazardous pollutants from aqueous systems. In this study, we have successfully fabricated bare GO and rGO, and then, the rGO was decorated with silver (Ag) nanoparticles to develop the Ag-rGO composite. The as-prepared materials were characterized by various techniques, such as UV-visible (UV-vis) and Fourier transform infrared (FTIR) spectroscopies, X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and scanning electron microscopy (SEM) to elucidate their structure, morphology, and chemical composition. The pollutant removal performance of the as-prepared materials was evaluated through a batch approach under the effect of various experimental variables for removal of NB dye from wastewater. As obvious, the Ag-rGO composite revealed exceptional performance for NB dye removal from wastewater, with a maximum removal percentage of 94% within 60 min, which is remarkably higher than those of the rGO (i.e., 59%) and GO (i.e., 22%), under the same experimental conditions. The adsorption data was analyzed with thermodynamics, isotherms, and kinetics models to better understand the physicochemical mechanisms driving the effective removal of the NB dye. The results reveal that Ag-rGO nanocomposite exhibit excellent adsorption ability as well as favorable thermodynamic and kinetic parameters for NB dye removal. It was also found that the presence of light enhanced the adsorptive removal of NB while using Ag-rGO as an adsorbent. The present study noted significant reusability of the Ag-rGO nanocomposite, likely due to minimal Ag leaching and/or the robust stability of the Ag-rGO. It is suggested that Ag-rGO-based hybrid materials could serve as promising candidates for efficiently adsorbing and catalytically removing various toxic pollutants from wastewater.

19.
ACS Omega ; 9(14): 15904-15914, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38617699

RESUMEN

Montmorillonite clay and agar are naturally occurring materials of significant importance in designing biocompatible materials tailored for applications in biotechnology and medicine. The introduction of magnetic properties has the potential to significantly boost their characteristics and expand their applications. In this study, we have successfully synthesized highly intercalated magnetic composites, incorporating magnetic iron oxide nanoparticles (MNPs), montmorillonite clay (MMT), and agar (AG), through a thermo-physicomechanical method. Three samples of MMT-AG with 2, 1.5, and 0.5% MNPs and three sample composites of MNPs-AG with 2, 1, and 0.5% MMT clay are prepared. The synthesized composites were characterized by SEM, XRD, TGA, DTA, and FTIR. SEM analysis revealed a uniform dispersion of MNPs and MMT in the composite. The XRD pattern confirmed the presence of MNPs in the composite site. The TGA and DTA results demonstrated improved thermal stability due to the MNP incorporation. FTIR spectra showed all of the constituents of agar, MNPs, and MMT clay. The swelling ratio was observed to range from 835% to 1739%. The swelling study indicated an increased hydrophobicity with the addition of MNPs to the composite. Antibacterial activities revealed a significant inhibition of Escherichia coli (E. coli) growth by ranging from 10 to 19 nm in the composite. The composite also exhibited a considerable antioxidant action, with IC50 values of 7.96, 46.55, and 57.58 µg/mL, and electrical properties just like conductors.

20.
J Biomol Struct Dyn ; : 1-13, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38686915

RESUMEN

Leucine is the native known ligand of Sestrin2 (Sesn2) and its interaction with Sesn2 is particularly important, as it influences the activity of mTOR in aging and its associated pathologies. It is important to find out how leucine interacts with Sesn2 and how mutations in the binding pocket of leucine affect the binding of leucine. Therefore, this study was committed to investigating the impact of non-synonymous mutations by incorporating a broad spectrum of simulation techniques, from molecular dynamics to free energy calculations. Our study was designed to model the atomic-scale interactions between leucine and mutant forms of Sesn2. Our results demonstrated that the interaction paradigm for the mutants has been altered thus showing a significant decline in the hydrogen bonding network. Moreover, these mutations compromised the dynamic stability by altering the conformational flexibility, sampling time, and leucine-induced structural constraints that consequently caused variation in the binding and structural stability. Molecular dynamics-based flexibility analysis revealed that the regions 217-339 and 371-380 demonstrated a higher fluctuation. Noteworthy, these regions correspond to a linker (217-339) and a loop (371-380) that cover the leucine binding cavity that is critical for the 'latch' mechanism in the N-terminal, which is essential for leucine binding. Further validation of reduced binding and modified internal motions caused by the mutants was obtained through binding free energy calculations, principal components analysis (PCA), and free energy landscape (FEL) analysis. By unraveling the molecular intricacies of Sesn2-leucine interactions and their mutations, we hope to pave the way for innovative strategies to combat the inevitable tide of aging and its associated diseases.Communicated by Ramaswamy H. Sarma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...