Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Luminescence ; 39(3): e4724, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38523053

RESUMEN

For white light-rendering research activities, interpretation by using colored emitting materials is an alternative approach. But there are issues in designing the white color emitting materials. Particularly, differences in thermal and decay properties of discrete red, green, and blue emitting materials led to the quest for the search of a single-phased material, able to emit primary colors for white light generation. The current study is an effort to design a simple, single-phase, and cost-effective material with the tunable emission of primary colors by a series of Mg1-xBaxAl2O4:Mn2+ nanopowders. Doping of manganese ion (Mn2+) in the presence of the larger barium cation (Ba2+) at tetrahedral-sites of the spinel magnesium aluminate (MgAl2O4) structure led to the creation of antisite defects. Doped samples were found to have lower bandgaps compared with MgAl2O4, and hybridization of 3d-orbitals of Mn2+ with O(2p), Mg(2s)/Al(2s3p) was found to be responsible for narrowing the bandgap. The distribution of cations at various sites at random results in a variety of electronic transitions between the valance band and oxygen vacancies as well as electron traps produced the antisite defects. The suggested compositions might be used in white light applications since they have three emission bands with centers at 516 nm (green), 464 nm (blue) and 622 nm (red) at an excitation wavelength of 380 nm. A detailed discussion to analyze the effects of the larger cationic radius of Ba2+ on the lattice strain, unit cell parameters, and cell volumes using X-ray diffraction analysis is presented.


Asunto(s)
Óxido de Aluminio , Óxido de Magnesio , Cristalografía por Rayos X , Electrónica
2.
RSC Adv ; 14(9): 6165-6177, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38375010

RESUMEN

Sorption-based atmospheric water harvesting (SBAWH) is a highly promising approach for extracting water from the atmosphere thanks to its sustainability, exceptional energy efficiency, and affordability. In this work, ZnFe2O4 and Zn0.4Co0.6Fe2O4 were evaluated for moisture adsorption. The desired materials were synthesized by a surfactant-assisted sol-gel method. Synthesized samples were characterized using X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, vibrating sample magnetometry (VSM), and point of zero charge (PZC). Crystallinity and phase composition were evaluated by XRD analysis. Several parameters were determined using XRD analysis: lattice parameter, unit cell volume, crystallite size, and bulk density. The morphology of synthesized materials was assessed via SEM, and unveiled the acquisition of consistent, homogeneous, and uniform crystals. Elemental composition was determined through EDX spectroscopy. Water adsorption on the surface was evaluated by FTIR spectroscopy. The magnetic properties of synthesized ZnFe2O4 and cobalt-doped ZnFe2O4 ferrites were investigated using VSM. The negative charge on the Zn0.4Co0.6Fe2O4 surface was explored using PZC. Adsorption studies on synthesized materials were conducted with the help of an atmospheric water harvesting (AWH) plant created by our team. Moisture adsorption isotherms of synthesized materials were determined using a gravimetric method under varying temperature and relative humidity (45-95%) conditions. The moisture content (Mc) of Zn0.4Co0.6Fe2O4 and ZnFe2O4 was 597 mg g-1 and 104 mg g-1, respectively. Key thermodynamic properties, including isosteric heat of adsorption (Qst), change in Gibbs free energy (ΔG), and change in sorption entropy (ΔS), were evaluated. Qst was negative, which confirmed the sorption of water vapors on the material surface. ΔG and ΔS indicated that water-vapor adsorption was spontaneous and exothermic. A second-order kinetics study was carried out on synthesized materials, demonstrating their chemisorption behavior. The latter was due to the oxygen defects created by replacement of Co2+ and Fe3+ at tetrahedral and octahedral sites. Water vapors in the atmosphere became attached to the surface and deprotonation occurred, and the hydroxyl ions were formed. Water vapor attached to these hydroxyl ions. A second-order kinetics study was carried out to confirm the chemisorption behavior of synthesized materials.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 300: 122934, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37270970

RESUMEN

Triazine based fluorescent sensor TBT was rationally designed and synthesized to achieve sequential detection of Hg2+ and L-cysteine based on the presence of sulfur moiety and suitable cavity in the molecule. Sensor TBT exhibited excellent sensing potential for the selective detection of Hg2+ ions and L-cysteine (Cys) in real samples. Upon addition of Hg2+ to sensor TBT, enhancement in emission intensity of sensor TBT was observed which was accredited to the presence of sulfur moiety and size of cavity in the sensor. Upon interaction with Hg2+ blockage of intramolecular charge transfer (ICT) along with chelation-enhanced fluorescence (CHEF) resulted in the increase in fluorescence emission intensity of sensor TBT. Further, TBT-Hg2+ complex was employed for the selective detection of Cys through fluorescence quenching mechanism. This was attributed to the significantly stronger interaction of Cys with Hg2+, which resulted in the formation of Cys-Hg2+ complex and subsequently sensor TBT was released from TBT-Hg2+ complex. The nature of interaction between TBT-Hg2+ and Cys-Hg2+ complex was evaluated through 1H NMR titration experimentations. Extensive DFT studies were also carried out which include thermodynamic stability, frontier molecular orbitals (FMO), density of states (DOS), non-covalent interaction (NCI), quantum theory of atom in molecule (QTAIM), electron density differences (EDD) and natural bond orbital (NBO) analyses. All the studies supported the non-covalent type of interaction between analytes and sensor TBT. The limit of detection for Hg2+ ions was found to be as low as 61.9 nM. Sensor TBT was also employed for the quantitative detection of Hg2+ and Cys in real samples. Additionally, logic gate was fabricated by using sequential detection strategy.


Asunto(s)
Cisteína , Mercurio , Cisteína/análisis , Espectrometría de Fluorescencia/métodos , Colorantes Fluorescentes/química , Mercurio/análisis , Iones , Azufre
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 300: 122946, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37262973

RESUMEN

Abnormal levels of mefenamic acid (MFA) in living organisms can result in hepatic necrosis, liver, and gastrointestinal diseases. Therefore, development of accurate and effective method for detection of MFA is of great significance for the protection of public health. Herein, we designed a stilbene based sensor ECO for the sensitive and selective detection of mefenamic acid by employing fluorescence spectroscopy for the first time. The developed sensor ECO displayed fluorescence turn-off response towards MFA based on PET (photoinduced electron transfer) and hydrogen bonding. The sensing mechanism of MFA was investigated through 1H NMR titration experiment and density functional theory (DFT) calculations. The presence of non-covalent interaction was confirmed through spectroscopic analysis and was further supported by non-covalent interaction (NCI) analysis and Bader's quantum theory of atoms in molecules (QTAIM) analysis. Additionally, the sensor ECO coated test strips were fabricated for on-site detection of mefenamic acid. Furthermore, the practical applicability of sensor ECO to detect MFA was also explored in human blood and artificial urine samples.


Asunto(s)
Colorantes Fluorescentes , Ácido Mefenámico , Humanos , Ácido Mefenámico/química , Colorantes Fluorescentes/química , Transporte de Electrón , Espectroscopía de Resonancia Magnética , Espectrometría de Fluorescencia
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 297: 122745, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37084683

RESUMEN

A novel triphenylamine (TPA) based sensor TTU was rationally designed and synthesized that exhibited reversible mechanochromic and aggregation induced emission enhancement (AIEE) properties. The AIEE active sensor was employed for fluorometric detection of Fe3+ in aqueous medium, with distinguished selectivity. The sensor showed a highly selective quenching response towards Fe3+ that is ascribed to complex formation with paramagnetic Fe3+. Subsequently, TTU-Fe3+ complex acted as a fluorescence sensor for the detection of deferasirox (DFX). The subsequent addition of DFX to TTU-Fe3+ complex led to the recovery of fluorescence emission intensity of sensor TTU that was attributed to the displacement of Fe3+ by DFX and release of sensor TTU. The proposed sensing mechanisms for Fe3+ and DFX was confirmed through 1H NMR titration experiment and DFT calculations. Frontier molecular orbitals (FMO), density of states (DOS), natural bond orbital (NBO), non-covalent interaction (NCI) and electron density difference (EDD) analysis were performed using DFT calculations to support the experimental results. Moreover, sensor TTU displayed colorimetric detection of Fe3+. Further, the sensor was employed for the detection of Fe3+ and DFX in real water samples. Finally, logic gate was fabricated by using sequential detection strategy.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 290: 122273, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36584641

RESUMEN

A new naphthalimide-based fluorescent probe NS with exceptional J-aggregates based aggregation-induced emission enhancement (AIEE) properties was rationally synthesized through a single-step imidation reaction. Probe NS exhibited excellent AIEE properties in aqueous media through the formation of J-aggregates with remarkable red-shift. The AIEE active probe NS was used for selective and sensitive detection of nitrobenzene (NB) based on fluorescence quenching response. Formation of J-aggregates was assessed through fluorescence titration. These J-aggregates contributed significantly to produce favorable interaction between probe NS and NB. The highly selective fluorescence detection of NB was accredited to the adjustable smaller size of NB that can easily penetrate into interstitial spaces of probe molecules. Ability of sensor to detect NB in solid state was also accomplished through solid state fluorescence spectroscopy. Nature of interaction and sensitivity of probe NS for NB has also been investigated through 1H NMR titration and density functional theory (DFT) including non-covalent interaction (NCI), quantum theory of atom in molecule (QTAIM), electron density differences (EDD), frontier molecular orbitals (FMO) and density of states (DOS) analysis. Advantageously, probe exhibited colorimetric and vapor phase detection of NB. Moreover, probe was quite sensitive for the trace detection of NB in real samples.

7.
J Environ Sci Health B ; 57(12): 932-947, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36469565

RESUMEN

Pesticides present in their commercial formulations are studied for their preferable binding toward carbon-based graphene oxide (GO) or transition metal nanoparticles (Fe, Co, Ni, and Cu), present as hybrids. This simple study also reveals the mechanism of interaction of few selected different classes of pesticides, namely, λ-cyhalothrin, imidacloprid, and metsulfuron-methyl toward these hybrids. Individually, to study this comparative binding when hybrids are not used, the understanding of preferred binding toward any of these selected compounds could be challenging, costly, and time-consuming. Dynamic light scattering (DLS) is used to study the changes observed for hydrodynamic radius and zeta potential for the stability of the resulting products. This simple method can also be extended to identify the binding mechanism for other diverse set of combinations. These studies are supported by binding of GO with nanoparticles in batch adsorption and the best fit using Langmuir and Freundlich isotherms is presented. Moreover, pesticide adsorption toward GO-nanoparticle composites is also evidenced.


Asunto(s)
Grafito , Nanopartículas del Metal , Plaguicidas , Dispersión Dinámica de Luz , Nanopartículas del Metal/química , Grafito/química
8.
RSC Adv ; 12(29): 18897-18910, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35873344

RESUMEN

Rational modification of molecular structure by incorporating electron donating groups can play a potential role for designing aggregation induced emission (AIE) active fluorescent probes. Based on this principle, fluorescent probes (1a-c) were synthesized, and they displayed excellent aggregation induced emission (AIE) behavior in a H2O/DMF (4 : 1, v/v) mixture due to restrictions in intramolecular charge transfer (ICT). As a comparison, probe 1d was synthesized by installing an electron withdrawing (-NO2) group that surprisingly quenched the aggregation behaviour. Additionally, AIE active probes 1a-c displayed a highly sensitive dual channel (fluorometric and colorimetric) response towards rapid detection of CN-, which is an active toxic material. Probes 1a-c showed selectively enhanced fluorescence emission behavior towards CN- with detection limits of 1.34 ppb, 1.38 ppb, and 1.54 ppb, respectively. The sensing mechanism involves Michael type adduct formation due to the nucleophilic addition reaction of cyanide with probes and was confirmed through 1H NMR titration experiments. In contrast, probe 1d containing an electron withdrawing moiety showed insensitivity towards CN-. Therefore, this study provides the efficient strategy to induce AIE character in fluorescent probes and expands the mechanistic approach toward the sensing of toxic CN-.

9.
Turk J Chem ; 46(1): 147-156, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-38143895

RESUMEN

Supramolecular solvent-based dispersive liquid-liquid microextraction technique has been developed as a preconcentration tool for the determination of trace level of Pb2+ and Cd2+. Dodecanol dispersed in tetrahydrofuran has been utilized as a supramolecular-solvent system for the extraction of analytes prior to their quantitative determination with graphite furnace atomic absorption spectrophotometer. Both Pb2+ and Cd2+, which were efficiently extracted by supramolecular solvent system, were complexed with dithizone followed by the addition of supramolecular solvent. The experimental variables that could possibly influence the extraction efficiency, i.e. pH value, temperature, sample volume, centrifugation time, rate of centrifugation, ionic strength, etc. were subjected to the optimization step. An interference study was also conducted to check the selectivity of developed method. Limit of detection calculated for Pb2+ and Cd2+ was 0.015 and 0.061 mg L-1, respectively. The limit of quantification was 0.05 and 0.2 mg L-1 for Pb2+ and Cd2+, respectively. The analytical signal was enhanced to 30 times in case of Pb2+ and 27 times in case of Cd2+. The results obtained revealed that the developed method is rapid, simple, sensitive, and efficient for the determination of both analytes in real water samples.

10.
Sci Rep ; 10(1): 15979, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32994426

RESUMEN

Weeds from Brassicaceae family are a major threat in many crops including canola, chickpea, cotton and wheat. Rapistrum rugosum (L) All. and Brassica tournefortii Gouan. are two troublesome weeds in the northern region of Australia. In order to examine their phenology of these weeds, a pot study was conducted in 2018 at the Research Farm of the University of Queensland, Gatton campus with two populations sourced from high (Gatton) and medium (St George) rainfall areas of the northern grain region of Australia. Planting was carried out monthly from April to September, and the growth, flowering and seed production were evaluated. Maximum growth and seed production were observed in weeds planted in April, compared to other planting dates. Biomass of R. rugosum and B. tournefortii was reduced by 85% and 78%, respectively, as a result of the delay in planting from April to July. R. rugosum and B. tournefortii produced more than 13,000 and 3500 seeds plant-1, respectively, when planted in April and seed production was reduced by > 84% and > 76% when planted in July. No significant differences were observed between populations of both weeds for plant height, number of leaves and biomass, however, the medium rainfall population of R. rugosum produced more seeds than the high rainfall population when planted in April. The results of this study suggest that, although R. rugosum and B. tournefortii were able to emerge in a wider time frame, the growth and seed production were greatest when both weeds were planted in April and there was concomitant reduction in growth attributes when planted in the subsequent months, indicating that management of these weeds early in the cropping season is a prerequisite to population reduction and the mitigation of crop yield losses.


Asunto(s)
Agricultura/métodos , Brassicaceae/fisiología , Australia , Brassica/crecimiento & desarrollo , Brassica/fisiología , Brassicaceae/crecimiento & desarrollo , Fertilidad , Flores/crecimiento & desarrollo , Malezas/crecimiento & desarrollo , Estaciones del Año , Semillas/crecimiento & desarrollo
11.
ACS Omega ; 5(17): 10123-10132, 2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-32391500

RESUMEN

A N-[(Benzyloxy)carbonyl]-l-alanyl-l-prolyl-l-leucine-N-cyclohexylcyclohexanamine (Cbz-APL) tripeptide-coated glassy carbon electrode (GCE)-based sensor was used for sensitive and selective recognition of cadmium ions in environmental water. Detailed cyclic voltammetric and electrochemical impedance spectroscopic studies were performed to investigate the charge transfer and sensing activity of the developed electrochemical sensor. Square wave anodic stripping voltammetry (SWASV) was employed to further investigate the sensitivity, selectivity, validity, and applicability of the developed sensor. A sharp electrochemical signal of oxidized Cd at -0.84 V versus Ag/AgCl provides evidence for the higher sensing ability of Cbz-APL/GCE than bare GCE at -0.79 V. Moreover, on Cbz-APL/GCE, extraordinary low detection limits of 4.34 fM and linearity range of 15 nM to 0.1 pM with coefficients of correlation higher than 0.99 for Cd2+ were achieved. Besides, the influence of inorganic and organic interferents on the targeted analyte signals was examined, and high selectivity of Cbz-APL/GCE for Cd2+ ions was observed. Lastly, the validity and applicability of the developed electrochemical sensor for the detection of Cd2+ ions were checked in real water samples, and 100% recovery was obtained.

12.
Langmuir ; 34(36): 10603-10612, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30109940

RESUMEN

To overcome the increased disease rate, utilization of the versatile broad spectrum antibiotic drugs in controlled drug-delivery systems has been a challenging and complex consignment. However, with the development of microemulsion (µE)-based formulations, drugs can be effectively encapsulated and transferred to the target source. Herein, two biocompatible oil-in-water (o/w) µE formulations comprising clove oil/Tween 20/ethylene glycol/water (formulation A) and clove oil/Tween 20/1-butanol/water (formulation B) were developed for encapsulating the gatifloxacin (GTF), a fourth-generation antibiotic. The pseudoternary phase diagrams were mapped at a constant surfactant/co-surfactant (1:1) ratio to bound the existence of a monophasic isotropic region for as-formulated µEs. Multiple complementary characterization techniques, namely, conductivity (σ), viscosity (η), and optical microscopy analyses, were used to study the gradual changes that occurred in the microstructure of the as-formulated µEs, indicating the presence of a percolation transformation to a bicontinuous permeate flow. GTF showed good solubility, 3.2 wt % at pH 6.2 and 4.0 wt % at pH 6.8, in optimum µE of formulation A and formulation B, respectively. Each loaded µE formulation showed long-term stability over 8 months of storage. Moreover, no observable aggregation of GTF was found, as revealed by scanning transmission electron microscopy and peak-to-peak correlation of IR analysis, indicating the stability of GTF inside the formulation. The average particle size of each µE, measured by dynamic light scattering, increased upon loading GTF, intending the accretion of drug in the interfacial layers of microdomains. Likewise, fluorescence probing sense an interfacial hydrophobic environment to GTF molecules in any of the examined formulations, which may be of significant interest for understanding the kinetics of drug release.


Asunto(s)
Antibacterianos/química , Portadores de Fármacos/química , Composición de Medicamentos , Emulsiones/química , Gatifloxacina/química , 1-Butanol/química , Aceite de Clavo/química , Liberación de Fármacos , Glicol de Etileno/química , Tamaño de la Partícula , Transición de Fase , Polisorbatos/química , Solubilidad , Viscosidad , Agua/química
13.
J Colloid Interface Sci ; 481: 117-24, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27472069

RESUMEN

Interactions of active pharmaceutical ingredients (API) with surfactants remain an important research area due to the need to improve drug delivery systems. In this study, UV-Visible spectrophotometry was used to investigate the interactions between a model low molecular weight hydrophilic drug sodium valproate (SV) and cationic surfactant cetyltrimethylammonium bromide (CTAB). Changes in the spectra of SV were observed in pre- and post-micellar concentrations of CTAB. The binding constant (Kb) values and the number of drug molecules encapsulated per micelle were calculated, which posed the possibility of mixed micelle formation and strong complexation between SV and CTAB. These results were compared to those of a novel room temperature surface active ionic liquid, which was synthesized by the removal of inorganic counterions from a 1:1 mixture of CTAB and SV. In this new compound the drug now constitutes a building block of the carrier and, as such, has considerably different surfactant properties to its building blocks. In addition, enhanced solubility in a range of solvents, including simulated gastric fluid, was observed. The study provides valuable experimental evidence concerning the performance of drug based surfactant ionic liquids and how their chemical manipulation, without altering the architecture of the API, leads to control of surfactant behavior and physicochemical properties. In turn, this should feed through to improved and controlled drug release rates and delivery mechanisms, and the prevention of precipitation or formation of polymorphs typical of crystalline form APIs.


Asunto(s)
Compuestos de Cetrimonio/química , Diseño de Fármacos , Líquidos Iónicos/química , Modelos Químicos , Tensoactivos/química , Ácido Valproico/química , Cationes/química , Cetrimonio , Teoría Cuántica
14.
J Colloid Interface Sci ; 465: 316-22, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26688124

RESUMEN

HYPOTHESIS: Sodium dioctylsulfosuccinate (Aerosol OT or NaAOT) is a well-studied charging agent for model poly(methyl methacrylate) (PMMA) latexes dispersed in nonpolar alkane solvents. Despite this, few controlled variations have been made to the molecular structure. A series of counterion-exchanged analogs of NaAOT with other alkali metals (lithium, potassium, rubidium, and cesium) were prepared, and it was expected that this should influence the stabilization of charge on PMMA latexes and the properties of the inverse micelles. EXPERIMENTS: The electrophoretic mobilities of PMMA latexes were measured for all the counterion-exchanged AOT analogs, and these values were used to calculate the electrokinetic or ζ potentials. This enabled a comparison of the efficacy of the different surfactants as charging agents. Small-angle scattering measurements (using neutrons and X-rays) were performed to determine the structure of the inverse micelles, and electrical conductivity measurements were performed to determine the ionized fractions and Debye lengths. FINDINGS: Sodium AOT is a much more effective charging agent than any of the other alkali metal AOTs. Despite this, the inverse micelle size and electrical conductivity of NaAOT are unremarkable. This shows a significant non-periodicity in the charging efficiency of these surfactants, and it emphasizes that charging particles in nonpolar solvents is a complex phenomenon.


Asunto(s)
Ácido Dioctil Sulfosuccínico/química , Metales Alcalinos/química , Polimetil Metacrilato/química , Tensoactivos/química
15.
J Colloid Interface Sci ; 363(2): 490-6, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21868022

RESUMEN

A viable cost-effective approach employing mixtures of non-ionic surfactants Triton X-114/Triton X-100 (TX-114/TX-100), and subsequent cloud point extraction (CPE), has been utilized to concentrate and recycle inorganic nanoparticles (NPs) in aqueous media. Gold Au- and palladium Pd-NPs have been pre-synthesized in aqueous phases and stabilized by sodium 2-mercaptoethanesulfonate (MES) ligands, then dispersed in aqueous non-ionic surfactant mixtures. Heating the NP-micellar systems induced cloud point phase separations, resulting in concentration of the NPs in lower phases after the transition. For the Au-NPs UV/vis absorption has been used to quantify the recovery and recycle efficiency after five repeated CPE cycles. Transmission electron microscopy (TEM) was used to investigate NP size, shape, and stability. The results showed that NPs are preserved after the recovery processes, but highlight a potential limitation, in that further particle growth can occur in the condensed phases.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Octoxinol/química , Paladio/química , Polietilenglicoles/química , Tensoactivos/química , Fraccionamiento Químico , Equipo Reutilizado , Ligandos , Mesna/química , Tamaño de la Partícula , Reciclaje , Propiedades de Superficie
16.
AAPS PharmSciTech ; 10(4): 1286-94, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19876741

RESUMEN

Formulation of a new oil-in-water (o/w) microemulsion composed of castor oil/Tween 80/ethanol/phosphate buffer for enhancing the loading capacity of an anti-inflammatory drug piroxicam has been accomplished. The pseudo-ternary phase diagram has been delineated at constant surfactant/cosurfactant ratio (1:2). The internal structure of so created four-component system was elucidated by means of an analysis of isotropic area magnitudes in the phase diagram. Conductivity (sigma), kinematic viscosity (keta), and surface tension (gamma) studies with the variation in Phiw (weight fraction of aqueous phase) show the occurrence of structural changes from water-in-oil (w/o) microemulsion to oil-in-water (o/w). Along with the solubility and partition studies of piroxicam in microemulsion components, the changes in the microstructure of the microemulsion after incorporation of drug have been evaluated using pH, sigma, gamma, keta, and density studies. Piroxicam, a poorly water-soluble drug displayed high solubility (1.0%) in an optimum microemulsion formulation using ethanol (55.0%), Tween 80 (26.5%), castor oil (7.5%), and phosphate buffer (11.0%). The results have shown that the microemulsion remained stable after the incorporation of piroxicam. Fluorescence spectra analysis taking pyrene as fluorescent probe was performed, and the results showed that pyrene was completely solubilized in the oil phases of the bicontinuous microemulsions. The fluorescence spectrum of the model drug piroxicam was used to probe the intramicellar region of nonionic microemulsion. The results showed that the piroxicam was localized in the interfacial film of microemulsion systems more deeply in the palisade layer with ethanol as the cosurfactant.


Asunto(s)
Antiinflamatorios no Esteroideos/química , Piroxicam/química , Conductividad Eléctrica , Emulsiones , Fluorescencia , Micelas , Piroxicam/administración & dosificación , Solubilidad , Tensión Superficial , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA