Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Biodivers ; : e202401068, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140485

RESUMEN

Medicinal plants have long been studied for their therapeutic benifits. The present research aims to unveil complex phytochemical profile and therapeutic properties of ethyl acetate fraction of Phlomis stewartii, an important medicinal plant. In this context, the Gas Chromatography-Mass Spectrometry (GC-MS) analysis of the fraction identified 26 compounds. Additionally, the fraction exhibited concentration dependent antioxidant activity with an IC50 value lower than the standard antioxidant butylated hydroxytoluene. The antifungal activity of the fraction examined against F. oxysporum, A. alternate, and R. solani resulted in almost complete inhibition (>90%) of fungal growth. Furthermore, the fraction exhibited significant antibacterial potential against B. subtilus, S. aureus, E. coli, and S. dysenteriae, with inhibition zones of 18±0.22, 17±0.22, 12±0.11, and 10±0.12, respectively. Briefly, the plant extract was found to be highly potent, particularly in its antifungal action. Further studies, including natural products isolation coupled with bioassays, are recommended for promising drug candidates discovery.

2.
Int J Biol Macromol ; 265(Pt 2): 131067, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38521328

RESUMEN

Researchers are consistently investigating novel and distinctive methods and materials that are compatible for human life and environmental conditions This study aimed to synthesize gold nanoparticles (ALPs-AuNPs) using for the first time an alkaline protease (ALPs) derived from Phalaris minor seed extract. A series of physicochemical techniques were used to inquire the formation, size, shape and crystalline nature of ALPs-AuNPs. The nanoparticles' ability to degrade methylene blue (MB) through photocatalysis under visible light irradiation was assessed. The findings demonstrated that ALPs-AuNPs exhibited remarkable efficacy by destroying 100 % of MB within a mere 30-minute irradiation period. In addition, the ALPs-AuNPs demonstrated remarkable effectiveness in inhibiting the growth of gram-positive (S. aureus) and gram-negative (E. coli) bacteria. The inhibition zones examined against the two bacterial strains were 23(±0.3) mm and 19(±0.4); 13(±0.3) mm and 11(±0.5) mm under light and dark conditions respectively. The ALPs-AuNPs exhibited significant antioxidant activity by effectively scavenging 88 % of stable and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals. As a result, the findings demonstrated that the environmentally friendly ALPs-AuNPs showed a strong potential for MB degradation and bacterial pathogen treatment.


Asunto(s)
Proteínas Bacterianas , Endopeptidasas , Oro , Nanopartículas del Metal , Humanos , Oro/química , Antibacterianos/farmacología , Nanopartículas del Metal/química , Escherichia coli , Staphylococcus aureus/metabolismo , Bacterias , Extractos Vegetales/química
3.
Int J Biol Macromol ; 266(Pt 1): 131155, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38547944

RESUMEN

Here, we reported the process for the production of Pd/CuO/ZnO nanocomposite utilizing alkaline protease from Phalaris minor seed extract, which is a unique, effective biogenic approach. Alkaline protease performed a crucial part in the reduction, capping and stabilization of Pd/CuO/ZnO nanocomposites. A series of physicochemical techniques were used to inquire the formation, size, shape and crystalline nature of Pd/CuO/ZnO nanocomposites. The notable performance of the synthesized nanocomposite as a photocatalyst and an antibacterial disinfectant was astonishing. The Pd/CuO/ZnO nanocrystals showed considerable photocatalytic activity by eliminating 99 % of the methylene blue (MB) in <30 min of exposure. After three test cycles, the nanocatalyst demonstrated exceptional reliability as a photocatalyst. The nanocomposite was also discovered to be an effective antibacterial agent, with zones of inhibitory activity for Staphylococcus aureus and Escherichia coli bacteria of 30(±0.2), 27(±0.3), 22(±0.2), and 21(±0.3) mm, respectively, in both light and dark conditions. Moreover, the Pd/CuO/ZnO nanocomposites showed strong antioxidant activity by efficiently scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals. The photocatalytic, antibacterial and antioxidative performance of Pd, CuO, ZnO, and CuO/ZnO were also assessed for the sake of comparison. This work shows that biogenic nanocomposites may be employed as a feasible alternative photocatalyst for the decomposition of dyes in waste water as well as a sustainable antibacterial agent.


Asunto(s)
Antibacterianos , Cobre , Endopeptidasas , Nanocompuestos , Paladio , Staphylococcus aureus , Óxido de Zinc , Óxido de Zinc/química , Óxido de Zinc/farmacología , Nanocompuestos/química , Cobre/química , Catálisis , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Paladio/química , Staphylococcus aureus/efectos de los fármacos , Endopeptidasas/química , Escherichia coli/efectos de los fármacos , Proteínas Bacterianas/química , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/síntesis química , Procesos Fotoquímicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...