Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 133(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37856217

RESUMEN

A20 is a ubiquitin-modifying protein that negatively regulates NF-κB signaling. Mutations in A20/TNFAIP3 are associated with a variety of autoimmune diseases, including multiple sclerosis (MS). We found that deletion of A20 in central nervous system (CNS) endothelial cells (ECs) enhances experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. A20ΔCNS-EC mice showed increased numbers of CNS-infiltrating immune cells during neuroinflammation and in the steady state. While the integrity of the blood-brain barrier (BBB) was not impaired, we observed a strong activation of CNS-ECs in these mice, with dramatically increased levels of the adhesion molecules ICAM-1 and VCAM-1. We discovered ICOSL to be expressed by A20-deficient CNS-ECs, which we found to function as adhesion molecules. Silencing of ICOSL in CNS microvascular ECs partly reversed the phenotype of A20ΔCNS-EC mice without reaching statistical significance and delayed the onset of EAE symptoms in WT mice. In addition, blocking of ICOSL on primary mouse brain microvascular ECs impaired the adhesion of T cells in vitro. Taken together, we propose that CNS EC-ICOSL contributes to the firm adhesion of T cells to the BBB, promoting their entry into the CNS and eventually driving neuroinflammation.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Enfermedades Neuroinflamatorias , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa , Animales , Ratones , Barrera Hematoencefálica/metabolismo , Sistema Nervioso Central/metabolismo , Células Endoteliales/metabolismo , Ratones Endogámicos C57BL , Esclerosis Múltiple/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Linfocitos T/metabolismo , Ligando Coestimulador de Linfocitos T Inducibles/metabolismo , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo
2.
Front Immunol ; 12: 748663, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34691061

RESUMEN

Ischemic stroke is one of the leading causes of morbidity and mortality globally. Hundreds of clinical trials have proven ineffective in bringing forth a definitive and effective treatment for ischemic stroke, except a myopic class of thrombolytic drugs. That, too, has little to do with treating long-term post-stroke disabilities. These studies proposed diverse options to treat stroke, ranging from neurotropic interpolation to venting antioxidant activity, from blocking specific receptors to obstructing functional capacity of ion channels, and more recently the utilization of neuroprotective substances. However, state of the art knowledge suggests that more pragmatic focus in finding effective therapeutic remedy for stroke might be targeting intricate intracellular signaling pathways of the 'neuroinflammatory triangle': ROS burst, inflammatory cytokines, and BBB disruption. Experimental evidence reviewed here supports the notion that allowing neuroprotective mechanisms to advance, while limiting neuroinflammatory cascades, will help confine post-stroke damage and disabilities.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Aldehídos/metabolismo , Barrera Hematoencefálica , Isquemia Encefálica/complicaciones , Isquemia Encefálica/inmunología , Isquemia Encefálica/patología , Citocinas/fisiología , Descubrimiento de Drogas , Endotelina-1/metabolismo , Regulación de la Expresión Génica , Humanos , Malondialdehído/metabolismo , Microglía/clasificación , Microglía/inmunología , Terapia Molecular Dirigida , Enfermedades Neuroinflamatorias/etiología , Enfermedades Neuroinflamatorias/fisiopatología , Fármacos Neuroprotectores/uso terapéutico , Óxido Nítrico/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Receptores de Citocinas/fisiología
3.
J Cereb Blood Flow Metab ; 41(2): 219-235, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32151223

RESUMEN

Cerebral small-vessel diseases (SVDs) often follow a progressive course. Little is known about the function of angiogenesis, which potentially induces regression of SVDs. Here, we investigated angiogenesis in a mouse model of incontinentia pigmenti (IP), a genetic disease comprising features of SVD. IP is caused by inactivating mutations of Nemo, the essential component of NF-κB signaling. When deleting Nemo in the majority of brain endothelial cells (NemobeKO mice), the transcriptional profile of vessels indicated cell proliferation. Brain endothelial cells expressed Ki67 and showed signs of DNA synthesis. In addition to cell proliferation, we observed sprouting and intussusceptive angiogenesis in NemobeKO mice. Angiogenesis occurred in all segments of the vasculature and in proximity to vessel rarefaction and tissue hypoxia. Apparently, NEMO was required for productive angiogenesis because endothelial cells that had escaped Nemo inactivation showed a higher proliferation rate than Nemo-deficient cells. Therefore, newborn endothelial cells were particularly vulnerable to ongoing recombination. When we interfered with productive angiogenesis by inducing ongoing ablation of Nemo, mice did not recover from IP manifestations but rather showed severe functional deficits. In summary, the data demonstrate that angiogenesis is present in this model of SVD and suggest that it may counterbalance the loss of vessels.


Asunto(s)
Inductores de la Angiogénesis/metabolismo , Isquemia Encefálica/fisiopatología , Células Endoteliales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , FN-kappa B/metabolismo , Neovascularización Fisiológica/fisiología , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Noqueados
4.
J Neurosci ; 36(36): 9313-25, 2016 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-27605608

RESUMEN

UNLABELLED: Hyperglycemia is common in patients with acute stroke, even in those without preexisting diabetes, and denotes a bad outcome. However, the mechanisms underlying the detrimental effects of hyperglycemia are largely unclear. In a mouse model of ischemic stroke, we found that hyperglycemia increased the infarct volume and decreased the number of protective noninflammatory monocytes/macrophages in the ischemic brain. Ablation of peripheral monocytes blocked the detrimental effect of hyperglycemia, suggesting that monocytes are required. In hyperglycemic mice, α-dicarbonyl glucose metabolites, the precursors for advanced glycation end products, were significantly elevated in plasma and ischemic brain tissue. The receptor of advanced glycation end products, AGER (previously known as RAGE), interfered with polarization of macrophages to a noninflammatory phenotype. When Ager was deleted, hyperglycemia did not aggravate ischemic brain damage any longer. Independently of AGER, methylglyoxal reduced the release of endothelial CSF-1 (M-CSF), which stimulates polarization of macrophages to a noninflammatory phenotype in the microenvironment of the ischemic brain. In summary, our study identified α-dicarbonyls and AGER as mediators by which hyperglycemia lowers the number of protective noninflammatory macrophages and consequently increases ischemic brain damage. Modulating the metabolism of α-dicarbonyls or blocking AGER may improve the treatment of stroke patients with hyperglycemia. SIGNIFICANCE STATEMENT: Although glucose is the main energy substrate of the brain, hyperglycemia aggravates ischemic brain damage in acute stroke. So far, clinical trials have indicated that insulin treatment provides no solution to this common clinical problem. This study shows, in an experimental stroke model, that hyperglycemia interferes with the polarization of monocytes/macrophages to a protective cell type. Key players are α-dicarbonyls and the receptor for advanced glycation end products (AGER). Deletion of AGER normalized monocyte/macrophage polarization and reversed the detrimental effects of hyperglycemia, suggesting new avenues to treat stroke patients.


Asunto(s)
Polaridad Celular/fisiología , Hiperglucemia/etiología , Hiperglucemia/patología , Macrófagos/patología , Monocitos/patología , Accidente Cerebrovascular/complicaciones , Animales , Trasplante de Médula Ósea , Encéfalo/citología , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Receptor 1 de Quimiocinas CX3C , Polaridad Celular/genética , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/fisiología , Regulación de la Expresión Génica/genética , Hiperglucemia/cirugía , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Monocitos/efectos de los fármacos , Receptor para Productos Finales de Glicación Avanzada/genética , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Receptores de Quimiocina/genética , Receptores de Quimiocina/metabolismo , Accidente Cerebrovascular/cirugía
5.
Nat Commun ; 5: 3944, 2014 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-24845831

RESUMEN

The ketone body ß-hydroxybutyrate (BHB) is an endogenous factor protecting against stroke and neurodegenerative diseases, but its mode of action is unclear. Here we show in a stroke model that the hydroxy-carboxylic acid receptor 2 (HCA2, GPR109A) is required for the neuroprotective effect of BHB and a ketogenic diet, as this effect is lost in Hca2(-/-) mice. We further demonstrate that nicotinic acid, a clinically used HCA2 agonist, reduces infarct size via a HCA2-mediated mechanism, and that noninflammatory Ly-6C(Lo) monocytes and/or macrophages infiltrating the ischemic brain also express HCA2. Using cell ablation and chimeric mice, we demonstrate that HCA2 on monocytes and/or macrophages is required for the protective effect of nicotinic acid. The activation of HCA2 induces a neuroprotective phenotype of monocytes and/or macrophages that depends on PGD2 production by COX1 and the haematopoietic PGD2 synthase. Our data suggest that HCA2 activation by dietary or pharmacological means instructs Ly-6C(Lo) monocytes and/or macrophages to deliver a neuroprotective signal to the brain.


Asunto(s)
Ácido 3-Hidroxibutírico/metabolismo , Encéfalo/metabolismo , Dieta Cetogénica , Macrófagos/metabolismo , Monocitos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Nicotínicos/metabolismo , Accidente Cerebrovascular/metabolismo , Animales , Encéfalo/efectos de los fármacos , Macrófagos/efectos de los fármacos , Ratones , Ratones Noqueados , Monocitos/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Niacina/farmacología , Receptores Acoplados a Proteínas G/agonistas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA