Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
World J Psychiatry ; 14(6): 767-783, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38984346

RESUMEN

Although significant advances have been made in understanding the patho-physiology of psychiatric disorders (PDs), therapeutic advances have not been very convincing. While psychotropic medications can reduce classical symptoms in patients with PDs, their long-term use has been reported to induce or exaggerate various pre-existing metabolic abnormalities including diabetes, obesity and non-alcoholic fatty liver disease (NAFLD). The mechanism(s) underlying these metabolic abnormalities is not clear; however, lipid/fatty acid accumulation due to enhanced de novo lipogenesis (DNL) has been shown to reduce membrane fluidity, increase oxidative stress and inflammation leading to the development of the aforementioned metabolic abnormalities. Intriguingly, emerging evidence suggest that DNL dysregulation and fatty acid accumulation could be the major mechanisms associated with the development of obesity, diabetes and NAFLD after long-term treatment with psychotropic medications in patients with PDs. In support of this, several adjunctive drugs comprising of anti-oxidants and anti-inflammatory agents, that are used in treating PDs in combination with psychotropic medications, have been shown to reduce insulin resistance and development of NAFLD. In conclusion, the above evidence suggests that DNL could be a potential pathological factor associated with various metabolic abnormalities, and a new avenue for translational research and therapeutic drug designing in PDs.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38994626

RESUMEN

BACKGROUND: Oral cancer poses a significant threat to public health worldwide. In addition, because many chemotherapy treatments have negative side effects, natural herbs may be beneficial for oral cancer therapy. Achyranthes aspera (AA), a potential medicinal herb, exerts various pharmacological and biochemical activities. OBJECTIVE: The present study aimed to predict the anti-oral cancer potential of AA using in silico tools and cell death by in vitro testing. METHODS: A total of fourteen bioactive constituents from AA herb were selected using phytochemical databases. The toxicity of AA herb extract was analysed through MTT assay against oral carcinoma A253 cell line. The binding activities of the phytocomponents against serine/ threonine-specific protein kinases isoforms, namely Akt1 (PDB ID: 3qkk) and Akt2 (PDB ID: 2jdo) proteins, were analysed using Discovery Studio 2021 and PyRx docking software. RESULTS: Cell viability data revealed that AA extract decreased the viability and reduced the number of live cells of the oral carcinoma A253 cell line in a dose-dependent manner. The halfmaximal concentration (IC50) value of AA was assessed as 204.74 µg/ml. Based on binding affinity, saponin C (-CDOCKER energy = -77.9862), oleanolic acid (-CDOCKER energy = - 49.4349), spinasterol (-CDOCKER energy = -38.1246), 36,47-dihydroxyhenpentacontan-4-one (-CDOCKER energy = -32.4386), and 20-hydroxyecdysone (-CDOCKER energy = -31.9138) were identified as the best compounds against Akt1, while, compounds saponin C (-CDOCKER energy = -134.412), oleanolic acid (-CDOCKER energy = -90.0846), spinasterol (-CDOCKER energy = -78.3213), 20-hydroxyecdysone (-CDOCKER energy = -80.1049), and ecdysone (- CDOCKER energy = -73.3885) were identified as Akt2 inhibitors. These top compounds fulfilled drug score values, pharmacokinetic and physicochemical characteristics, and druglikeness parameters. CONCLUSION: The present findings reveal that the lead phytomolecules of AA could be effective and developed as a prospective drug against oral cancer.

3.
Stem Cells ; 41(11): 987-1005, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37591309

RESUMEN

Stroke is a major contributor to mortality and impairment on a global scale, with few effective treatments available. Aberrant expression of various non-coding RNAs (ncRNAs) has been identified after stroke onset, impacting neurogenesis, angiogenesis, apoptosis, and autophagy. The roles and mechanisms of ncRNAs hold great promise for future ischemic stroke treatments, as they could modify stroke impact and course on a well-controllable molecular level. Exploring the functions and underlying mechanisms of ncRNAs after stroke has the potential to unveil novel therapeutic targets for the treatment of stroke and may also pave the way toward novel and more precise diagnostic options for stroke and stroke outcomes. This review emphasizes the importance of ncRNAs in the treatment of stroke and their potential as therapeutic targets.


Asunto(s)
Accidente Cerebrovascular Isquémico , ARN Largo no Codificante , Accidente Cerebrovascular , Humanos , ARN no Traducido/genética , ARN no Traducido/metabolismo , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/terapia , Neurogénesis/genética
4.
Int J Biol Macromol ; 242(Pt 2): 124859, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37187418

RESUMEN

Patients with Alzheimer's disease (AD) display both peripheral tissue and brain insulin resistance, the later could be a potential risk factor for cognitive dysfunction. While certain degree of inflammation is required for inducing insulin resistance, underlying mechanism(s) remains unclear. Evidence from diverse research domains suggest that elevated intracellular fatty acids of de novo pathway can induce insulin resistance even without triggering inflammation; however, the effect of saturated fatty acids (SFAs) could be detrimental due the development of proinflammatory cues. In this context, evidence suggest that while lipid/fatty acid accumulation is a characteristic feature of brain pathology in AD, dysregulated de novo lipogenesis could be a potential source for lipid/fatty acid accumulation. Therefore, therapies aimed at regulating de novo lipogenesis could be effective in improving insulin sensitivity and cognitive function in patients with AD.


Asunto(s)
Enfermedad de Alzheimer , Resistencia a la Insulina , Humanos , Resistencia a la Insulina/fisiología , Lipogénesis/fisiología , Hígado , Enfermedad de Alzheimer/metabolismo , Ácidos Grasos/metabolismo , Inflamación/patología
5.
Semin Cancer Biol ; 92: 102-127, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37054904

RESUMEN

Cerebral ischemic stroke and glioma are the two leading causes of patient mortality globally. Despite physiological variations, 1 in 10 people who have an ischemic stroke go on to develop brain cancer, most notably gliomas. In addition, glioma treatments have also been shown to increase the risk of ischemic strokes. Stroke occurs more frequently in cancer patients than in the general population, according to traditional literature. Unbelievably, these events share multiple pathways, but the precise mechanism underlying their co-occurrence remains unknown. Transcription factors (TFs), the main components of gene expression programmes, finally determine the fate of cells and homeostasis. Both ischemic stroke and glioma exhibit aberrant expression of a large number of TFs, which are strongly linked to the pathophysiology and progression of both diseases. The precise genomic binding locations of TFs and how TF binding ultimately relates to transcriptional regulation remain elusive despite a strong interest in understanding how TFs regulate gene expression in both stroke and glioma. As a result, the importance of continuing efforts to understand TF-mediated gene regulation is highlighted in this review, along with some of the primary shared events in stroke and glioma.


Asunto(s)
Neoplasias Encefálicas , Glioma , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Glioma/complicaciones , Glioma/genética , Neoplasias Encefálicas/complicaciones , Neoplasias Encefálicas/genética , Accidente Cerebrovascular/genética
6.
ACS Nano ; 17(9): 8680-8693, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37102996

RESUMEN

Ischemia-reperfusion (I/R) injury is a disease process that affects several vital organs. There is widespread agreement that the NLRP3 inflammasome pathway plays a crucial role in the development of I/R injury. We have developed transferrin-conjugated, pH-responsive nanomicelles for the entrapment of MCC950 drug. These nanomicelles specifically bind to the transferrin receptor 1 (TFR1) expressed on the cells of the blood-brain barrier (BBB) and thus help the cargo to cross the BBB. Furthermore, the therapeutic potential of nanomicelles was assessed using in vitro, in ovo, and in vivo models of I/R injury. Nanomicelles were injected into the common carotid artery (CCA) of a middle cerebral artery occlusion (MCAO) rat model to achieve maximum accretion of nanomicelles into the brain as blood flows toward the brain in the CCA. The current study reveals that the treatment with nanomicelles significantly alleviates the levels of NLRP3 inflammasome biomarkers which were found to be increased in oxygen-glucose deprivation (OGD)-treated SH-SY5Y cells, the I/R-damaged right vitelline artery (RVA) of chick embryos, and the MCAO rat model. The supplementation with nanomicelles significantly enhanced the overall survival of MCAO rats. Overall, nanomicelles exerted therapeutic effects against I/R injury, which might be due to the suppression of the activation of the NLRP3 inflammasome.


Asunto(s)
Isquemia Encefálica , Neuroblastoma , Daño por Reperfusión , Embrión de Pollo , Ratas , Humanos , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR , Isquemia Encefálica/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/prevención & control , Daño por Reperfusión/metabolismo , Reperfusión
7.
Stem Cell Rev Rep ; 19(5): 1415-1426, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36811746

RESUMEN

Ischemic stroke is the major cause of death and morbidity worldwide. Stem cell treatment is at the forefront of ischemic therapeutic interventions. However, the fate of these cells following transplantation is mostly unknown. The current study examines the influence of oxidative and inflammatory pathological events associated with experimental ischemic stroke (oxygen glucose deprivation (OGD)) on the stem cell population (human Dental Pulp Stem Cells, and human Mesenchymal Stem Cells) through the involvement of the NLRP3 inflammasome. We explored the destiny of the above-mentioned stem cells in the stressed micro (-environment) and the ability of MCC950 to reverse the magnitudes. An enhanced expression of NLRP3, ASC, cleaved caspase1, active IL-1ß and active IL-18 in OGD-treated DPSC and MSC was observed. The MCC950 significantly reduced NLRP3 inflammasome activation in the aforementioned cells. Further, in OGD groups, oxidative stress markers were shown to be alleviated in the stem cells under stress, which was effectively relieved by MCC950 supplementation. Interestingly, whereas OGD increased NLRP3 expression, it decreased SIRT3 levels, implying that these two processes are intertwined. In brief, we discovered that MCC950 inhibits NLRP3-mediated inflammation by inhibiting the NLRP3 inflammasome and increasing SIRT3. To conclude, according to our findings, inhibiting NLRP3 activation while enhancing SIRT3 levels with MCC950 reduces oxidative and inflammatory stress in stem cells under OGD-induced stress. These findings shed light on the causes of hDPSC and hMSC demise following transplantation and point to strategies to lessen therapeutic cell loss under ischemic-reperfusion stress.


Asunto(s)
Accidente Cerebrovascular Isquémico , Sirtuina 3 , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Oxígeno , Glucosa , Sulfonamidas/farmacología
8.
Cytotherapy ; 24(8): 755-766, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35880307

RESUMEN

Currently, treating coronavirus disease 2019 (COVID-19) patients, particularly those afflicted with severe pneumonia, is challenging, as no effective pharmacotherapy for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exists. Severe pneumonia is recognized as a clinical syndrome characterized by hyper-induction of pro-inflammatory cytokine production, which can induce organ damage, followed by edema, dysfunction of air exchange, acute respiratory distress syndrome, acute cardiac injury, secondary infection and increased mortality. Owing to the immunoregulatory and differentiation potential of mesenchymal stem cells (MSCs), we aimed to outline current insights into the clinical application of MSCs in COVID-19 patients. Based on results from preliminary clinical investigations, it can be predicted that MSC therapy for patients infected with SARS-CoV-2 is safe and effective, although multiple clinical trials with a protracted follow-up will be necessary to determine the long-term effects of the treatment on COVID-19 patients.


Asunto(s)
COVID-19 , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Síndrome de Dificultad Respiratoria , COVID-19/terapia , Humanos , Trasplante de Células Madre Mesenquimatosas/métodos , SARS-CoV-2
9.
Materials (Basel) ; 15(13)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35806507

RESUMEN

Stabilized aggregate bases are vital for the long-term service life of pavements. Their stiffness is comparatively higher; therefore, the inclusion of stabilized materials in the construction of bases prevents the cracking of the asphalt layer. The effect of wet−dry cycles (WDCs) on the resilient modulus (Mr) of subgrade materials stabilized with CaO and cementitious materials, modelled using artificial neural network (ANN) and gene expression programming (GEP) has been studied here. For this purpose, a number of wet−dry cycles (WDC), calcium oxide to SAF (silica, alumina, and ferric oxide compounds in the cementitious materials) ratio (CSAFRs), ratio of maximum dry density to the optimum moisture content (DMR), confining pressure (σ3), and deviator stress (σ4) were considered input variables, and Mr was treated as the target variable. Different ANN and GEP prediction models were developed, validated, and tested using 30% of the experimental data. Additionally, they were evaluated using statistical indices, such as the slope of the regression line between experimental and predicted results and the relative error analysis. The slope of the regression line for the ANN and GEP models was observed as (0.96, 0.99, and 0.94) and (0.72, 0.72, and 0.76) for the training, validation, and test data, respectively. The parametric analysis of the ANN and GEP models showed that Mr increased with the DMR, σ3, and σ4. An increase in the number of WDCs reduced the Mr value. The sensitivity analysis showed the sequences of importance as: DMR > CSAFR > WDC > σ4 > σ3, (ANN model) and DMR > WDC > CSAFR > σ4 > σ3 (GEP model). Both the ANN and GEP models reflected close agreement between experimental and predicted results; however, the ANN model depicted superior accuracy in predicting the Mr value.

10.
J Mol Model ; 28(8): 212, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35794497

RESUMEN

The recent outbreak "Coronavirus Disease 2019 (COVID-19)" is caused by fast-spreading and highly contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV2). This virus enters into the human respiratory system by binding of the viral surface spike glycoprotein (S-protein) to an angiotensin-converting enzyme2 (ACE2) receptor that is found in the nasal passage and oral cavity of a human. Both spike protein and the ACE2 receptor have been identified as promising therapeutic targets to develop anti-SARS-CoV2 drugs. No therapeutic drugs have been developed as of today except for some vaccines. Therefore, potent therapeutic agents are urgently needed to combat the COVID-19 infections. This goal would be achieved only by applying drug repurposing and computational approaches. Thus, based on drug repurposing approach, we have investigated 16 bioactive components (1-16) from different nasal spray solutions to check their efficacies against human ACE2 and SARS-CoV2 spike proteins by performing molecular docking and molecular dynamic (MD) simulation studies. In this study, three bioactive components namely ciclesonide (8), levocabastine (13), and triamcinolone acetonide (16) have been found as promising inhibitory agents against SARS-CoV2 spike and human ACE2 receptor proteins with excellent binding affinities, comparing to reference drugs such as nafamostat, arbidol, losartan, and benazepril. Furthermore, MD simulations were performed (triplicate) for 100 ns to confirm the stability of 8, 13, and 16 with said protein targets and to compute MM-PBSA-based binding-free energy calculations. Thus, bioactive components 8, 13, and 16 open the door for researchers and scientist globally to investigate them against SARS-CoV2 through in vitro and in vivo analysis.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Tratamiento Farmacológico de COVID-19 , COVID-19 , COVID-19/prevención & control , Reposicionamiento de Medicamentos , Humanos , Glicoproteínas de Membrana/metabolismo , Simulación del Acoplamiento Molecular , Rociadores Nasales , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2
11.
Materials (Basel) ; 15(11)2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35683324

RESUMEN

Rapid industrialization is leading to the pollution of underground natural soil by alkali concentration which may cause problems for the existing expansive soil in the form of producing expanding lattices. This research investigates the effect of stabilizing alkali-contaminated soil by using fly ash. The influence of alkali concentration (2 N and 4 N) and curing period (up to 28 days) on the unconfined compressive strength (UCS) of fly ash (FA)-treated (10%, 15%, and 20%) alkali-contaminated kaolin and black cotton (BC) soils was investigated. The effect of incorporating different dosages of FA (10%, 15%, and 20%) on the UCSkaolin and UCSBC soils was also studied. Sufficient laboratory test data comprising 384 data points were collected, and multi expression programming (MEP) was used to create tree-based models for yielding simple prediction equations to compute the UCSkaolin and UCSBC soils. The experimental results reflected that alkali contamination resulted in reduced UCS (36% and 46%, respectively) for the kaolin and BC soil, whereas the addition of FA resulted in a linear rise in the UCS. The optimal dosage was found to be 20%, and the increase in UCS may be attributed to the alkali-induced pozzolanic reaction and subsequent gain of the UCS due to the formation of calcium-based hydration compounds (with FA addition). Furthermore, the developed models showed reliable performance in the training and validation stages in terms of regression slopes, R, MAE, RMSE, and RSE indices. Models were also validated using parametric and sensitivity analysis which yielded comparable variation while the contribution of each input was consistent with the available literature.

12.
J Vis Exp ; (180)2022 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-35253800

RESUMEN

Ischemia and reperfusion (I/R) disorders, such as myocardial infarction, stroke, and peripheral vascular disease, are a few of the leading causes of illness and death. Many in vitro and in vivo models are currently available for studying the I/R mechanism in disease or damaged tissues. However, to date, no in ovo I/R model has been reported, which would allow for a better understanding of I/R mechanisms and faster drug screening. This paper describes I/R modeling using a spinal needle customized hook in a 3-day chick embryo to understand I/R development and treatment mechanisms. Our model can be used to investigate anomalies at the DNA, RNA, and protein levels. This method is simple, quick, and inexpensive. The current model can be used independently or in conjunction with existing in vitro and in vivo I/R models.


Asunto(s)
Infarto del Miocardio , Daño por Reperfusión Miocárdica , Animales , Embrión de Pollo , Isquemia , Reperfusión
13.
Stem Cells ; 40(5): 468-478, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35294968

RESUMEN

Stem cell therapies have emerged as a promising treatment strategy for various diseases characterized by ischemic injury such as ischemic stroke. Cell survival after transplantation remains a critical issue. We investigated the impact of oxidative stress, being typically present in ischemically challenged tissue, on human dental pulp stem cells (hDPSC) and human mesenchymal stem cells (hMSC). We used oxygen-glucose deprivation (OGD) to induce oxidative stress in hDPSC and hMSC. OGD-induced generation of O2•- or H2O2 enhanced autophagy by inducing the expression of activating molecule in BECN1-regulated autophagy protein 1 (Ambra1) and Beclin1 in both cell types. However, hDPSC and hMSC pre-conditioning using reactive oxygen species (ROS) scavengers significantly repressed the expression of Ambra1 and Beclin1 and inactivated autophagy. O2•- or H2O2 acted upstream of autophagy, and the mechanism was unidirectional. Furthermore, our findings revealed ROS-p38-Erk1/2 involvement. Pre-treatment with selective inhibitors of p38 and Erk1/2 pathways (SB202190 and PD98059) reversed OGD effects on the expression of Ambra1 and Beclin1, suggesting that these pathways induced oxidative stress-mediated autophagy. SIRT3 depletion was found to be associated with increased oxidative stress and activation of p38 and Erk1/2 MAPKs pathways. Global ROS inhibition by NAC or a combination of polyethylene glycol-superoxide dismutase (PEG-SOD) and polyethylene glycol-catalase (PEG-catalase) further confirmed that O2•- or H2O2 or a combination of both impacts stems cell viability by inducing autophagy. Furthermore, autophagy inhibition by 3-methyladenine (3-MA) significantly improved hDPSC viability. These findings contribute to a better understanding of post-transplantation hDPSC and hMSC death and may deduce strategies to minimize therapeutic cell loss under oxidative stress.


Asunto(s)
Autofagia , Peróxido de Hidrógeno , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis , Beclina-1/metabolismo , Beclina-1/farmacología , Supervivencia Celular , Glucosa/metabolismo , Humanos , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo , Oxígeno/farmacología , Especies Reactivas de Oxígeno/metabolismo , Células Madre/metabolismo
14.
BMC Complement Med Ther ; 22(1): 68, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35291987

RESUMEN

BACKGROUND: Phoenix dactylifera L. has a diverse set of pharmacological properties due to its distinct phytochemical profile. The purpose of this study was to investigate the anticancer potential of Phoenix dactylifera seed extract (PDSE) in human breast cancer MDA-MB-231 and MCF-7 cells, as well as liver cancer HepG2 cells, and to investigate the anticancer efficacy in triple-negative MDA-MB-231 cells, followed by in silico validation of the molecular interaction between active components of PDSE and caspase-3, an apoptosis executioner protein . METHODS: In this study, human cancer cell lines were cultured and subsequently treated with 10 to 100 µg/mL of PDSE. MTT test was performed to determine the cell viability, MMP was measured using fluorescent probe JC-1, nuclear condensation was determined by Hoechst 33258 dye, Annexin V-FITC & PI staining and cell cycle analysis were evaluated through flow cytometer, and apoptotic markers were detected using western blotting. The bioactive agents in PDSE were identified using high-performance liquid chromatography (HPLC) analysis. The binding affinity was validated using molecular docking tools AutoDock Vina and iGEMDOCK v2.1. RESULTS: Cell viability data indicated that PDSE inhibited cell proliferation in both breast cancer cells and liver cancer cells. MDA-MB-231 cells showed maximum growth inhibition with an IC50 value of 85.86 µg/mL for PDSE. However, PDSE did not show any significant toxicity against the normal Vero cell line. PDSE induced MMP loss and formation of apoptotic bodies, enhanced late apoptosis at high doses and arrested cells in the S phase of cell cycle. PDSE activated the enzymatic activity of cleaved caspase-3 and caused the cleavage of poly-ADB ribose polymerase (PARP) protein. PDSE upregulated pro-apoptotic Bax protein markedly but  no significant effect on tumor suppressor protein p53, while it downregulated the anti-apoptotic Bcl-2 protein expression. HPLC analysis showed the presence of rutin and quercetin bioactive flavonols in ethanolic extract of PDS. Interestingly, both active components revealed a strong binding interaction with amino acid residues of caspase-3 (PDB ID: 2XYP; Hetero 4-mer - A2B2) protein. CONCLUSION: PDS could serve as a potential medicinal source for apoptotic cell death in human breast cancer cells and, thus, could be used as a promising and crucial candidate in anticancer drug development. This study warrants further in vivo research, followed by clinical investigation.


Asunto(s)
Neoplasias de la Mama , Phoeniceae , Neoplasias de la Mama/tratamiento farmacológico , Caspasa 3/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Simulación del Acoplamiento Molecular , Phoeniceae/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
15.
J Biomol Struct Dyn ; 40(9): 3928-3948, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-33289456

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel etiological agent of coronavirus disease 2019 (COVID-19). Nigella sativa, commonly known as black seed or black cumin, has been a historical and traditional plant since thousands of years. Based on their therapeutic efficacy, the chief components of terpenoids and flavonoids were selected from N. sativa seeds and seed oil. This study was designed to check the antiviral efficacy of N. sativa main phytoconstituents against five potential targets of SARS-CoV-2 using in silico structure-based virtual screening approach. Out of twenty five phytocomponents, ten components showed best binding affinity against two viral proteins viz. N-terminal RNA binding domain (NRBD; PDB ID: 6M3M) of nucleocapsid protein and papain-like protease (PL-PRO; PDB ID: 6W9C) of SARS-CoV-2 using AutoDock 4.2.6, AutoDock Vina and iGEMDOCK. PASS analyses of all ten phytocomponents using Lipinski's Rule of five showed promising results. Further, druglikeness and toxicity assessment using OSIRIS Data Warrior v5.2.1 software exhibited the feasibility of phytocomponents as drug candidates with no predicted toxicity. Molecular dynamics simulation study of NRBD of SARS-CoV-2 nucleocapsid protein-alpha-spinasterol complex and PL-PRO-cycloeucalenol complex displayed strong stability at 300 K. Both these complexes exhibited constant root mean square deviation (RMSDs) of protein side chains and Cα atoms throughout the simulation run time. Interestingly, PL-PRO and NRBD are key proteins in viral replication, host cell immune evasion and viral assembly. Thus, NRBD and PL-PRO have the potential to serve as therapeutic targets for N. sativa phytoconstituents in drug discovery process against COVID-19.


Asunto(s)
Antivirales , Proteínas de la Nucleocápside de Coronavirus , Proteasas Similares a la Papaína de Coronavirus , Nigella sativa , SARS-CoV-2 , Antivirales/química , Proteínas de la Nucleocápside de Coronavirus/antagonistas & inhibidores , Proteasas Similares a la Papaína de Coronavirus/antagonistas & inhibidores , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Nigella sativa/química , Fosfoproteínas/antagonistas & inhibidores , Inhibidores de Proteasas/química , SARS-CoV-2/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
16.
J Biomol Struct Dyn ; 40(12): 5515-5546, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-33526003

RESUMEN

A sudden outbreak of a novel coronavirus SARS-CoV-2 in 2019 has now emerged as a pandemic threatening to efface the existence of mankind. In absence of any valid and appropriate vaccines to combat this newly evolved agent, there is need of novel resource molecules for treatment and prophylaxis. To this effect, flavonol morin which is found in fruits, vegetables and various medicinal herbs has been evaluated for its antiviral potential in the present study. PASS analysis of morin versus reference antiviral drugs baricitinib, remdesivir and hydroxychloroquine revealed that morin displayed no violations of Lipinski's rule of five and other druglikeness filters. Morin also displayed no tumorigenic, reproductive or irritant effects and exhibited good absorption and permeation through GI (clogP <5). In principal component analysis, morin appeared closest to baricitinib in 3D space. Morin displayed potent binding to spike glycoprotein, main protease 3CLPro and papain-like protease PLPro of SARS-CoV-2, SARS-CoV and MERS-CoV using molecular docking and significant binding to three viral-specific host proteins viz. human ACE2, importin-α and poly (ADP-ribose) polymerase (PARP)-1, further lending support to its antiviral efficacy. Additionally, morin displayed potent binding to pro-inflammatory cytokines IL-6, 8 and 10 also supporting its anti-inflammatory activity. MD simulation of morin with SARS-CoV-2 3CLPro and PLPro displayed strong stability at 300 K. Both complexes exhibited constant RMSDs of protein side chains and Cα atoms throughout the simulation run time. In conclusion, morin might hold considerable therapeutic potential for the treatment and management of not only COVID-19, but also SARS and MERS if studied further. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Humanos , Enzima Convertidora de Angiotensina 2 , Antivirales/química , Flavonoides , Flavonoles , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Simulación del Acoplamiento Molecular , Inhibidores de Poli(ADP-Ribosa) Polimerasas , SARS-CoV-2 , Proteínas Virales/química
17.
J Biomol Struct Dyn ; 40(20): 9648-9700, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34243689

RESUMEN

There is currently a dearth of specific therapies to treat respiratory infections caused by the three related species of coronaviruses viz. SARS-CoV-2, SARS-CoV and MERS-CoV. Prevention from disease is currently the safest and most convenient alternative available. The present study aimed to evaluate the preventive and therapeutic effect of fifteen phytoconstituents from medicinal plants of Ayurveda against coronaviruses by in silico screening. All the phytoconstituents exhibited rapid GI absorption and bioavailability and most of them had no toxicity versus reference drug chloroquine. BAS analyses revealed that most of the phytocomponents had favorable bioactivity scores towards biological target proteins. Principal component analysis revealed that most of the phytoconstituents fell close to chloroquine in 3D projection of chemical space. Affinity of phytoconstituents towards SARS-CoV-2 spike protein-human ACE2 complex decreased as isomeldenin > tinosporaside > EGCG whereas in case of unbound ACE2, the strength of binding followed the order isomeldenin > tinosporaside > ellagic acid. Towards SARS-CoV-2 main and papain-like proteases, the affinity decreased as isomeldenin > EGCG > tinosporaside and EGCG > tinosporaside > isomeldenin, respectively. Most phytoconstituents displayed significant binding kinetics to the selected protein targets than chloroquine. SAR analysis revealed that isomeldenin, tinosporaside, EGCG and ellagic acid bind to viral spike glycoproteins via H-bond, Pi-Pi, Pi-sigma and Pi-alkyl type interactions. Molecular dynamics simulation of isomeldenin and EGCG with SARS-CoV and SARS-CoV-2 spike glycoproteins exhibited low deviations throughout the 100 ns simulation indicating good stability and compactness of the protein-ligand complexes. Thus, the above four phytoconstituents have the potential to emerge as prophylactic and therapeutic agents against coronaviruses if investigated further in vitro and in vivo.


Asunto(s)
Antivirales , Medicina Ayurvédica , SARS-CoV-2 , Humanos , Enzima Convertidora de Angiotensina 2/química , Antivirales/química , Cloroquina/metabolismo , COVID-19 , Ácido Elágico/metabolismo , Glicoproteínas/metabolismo , Agentes Inmunomoduladores , Simulación del Acoplamiento Molecular , SARS-CoV-2/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos
18.
Behav Neurol ; 2021: 1664377, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858540

RESUMEN

E-shopping is a rapidly growing phenomenon among different individuals who intend to shop online. However, a trust deficit in the E-shopping environment has always been a critical issue in the brick-and-click mode of shopping, being one of the main reasons for E-cart abandonment in E-commerce. This empirical study is aimed at investigating the perceived effect of website trust on E-shopping intentions and behaviour, drawing upon the theory of planned behaviour (TPB). Data were collected through self-administered questionnaires from working adults who shop for garments online. Structural equation modelling was used to evaluate the model fit and assumptions. Our findings suggest that website trust and E-shopping attitude play substantial roles in building E-shopping intentions and actual behaviours. Both are the significant predictors of the behaviour mediated by E-shopping intentions. However, E-shopping intentions did not mediate between subjective norms and E-shopping behaviour, when working adults decide to purchase garments online.


Asunto(s)
Intención , Teoría Psicológica , Adulto , Humanos , Encuestas y Cuestionarios
19.
Int J Food Sci ; 2021: 9985784, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34476257

RESUMEN

This study examines the role of a private standard on corporate social responsibility (CSR) compliance in the Pakistani mango industry and how this compliance affects rural workers' motivation. Pakistan is the fifth largest mango producer in the world and the fourth largest exporter in global mango trade; also, mango is the biggest fruit crop within the country. Mango trade is subject to trade terms, where buyers decide the conditions of trade agreements by means of codes of conduct. The key dimensions of the codes involved in agrofood trade are food safety, traceability, worker welfare, and environmental consideration, issues which are all connected with CSR. Private standards ensure compliance with these codes of conduct. This study draws on interviews and a questionnaire survey with certified mango producers and farm workers in Pakistan. The mango industry also involves other stakeholders such as government institutes and NGOs; interviews were also conducted with their representatives. Given that this study is an impact assessment research, the researcher designed a theoretical framework using a mixed method approach to investigate the rationale behind acquiring the standard by the mango growers in Pakistan and what impact (if any) this shift has generated with regard to the farm workers' job satisfaction and motivation. This study is the first to empirically examine good agricultural practices in Pakistan and evaluate their impact. This study shows that private standards play a significant role in ensuring compliance, and CSR practices implemented through them were found to be positively related to the rural workers' job satisfaction and motivation. Furthermore, this study has made separate contributions to theory, methodology, and practice. The production of the synergistic model for improving compliance is among the key highlights of the study. The findings of this study can extend to other agriculture and primary production industry workers in Pakistan and even beyond to other developing countries' rural agriculture workers.

20.
Stem Cell Rev Rep ; 17(6): 2347-2358, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34487308

RESUMEN

Stem cell therapies are becoming increasingly popular solutions for neurological disorders. However, there is a lower survival rate of these cells after transplantation. Oxidative stress is linked to brain damage, and it may also impact transplanted stem cells. To better understand how transplanted cells respond to oxidative stress, the current study used H2O2. We briefly illustrated that exogenous H2O2 treatment exaggerated oxidative stress in the human dental pulp and mesenchymal stem cells. 2',7'-Dichlorofluorescin diacetate (DCFDA), MitoSOX confirms the reactive oxygen species (ROS) involvement, which was remarkably subsided by the ROS inhibitors. The findings showed that H2O2 activates autophagy by enhancing pro-autophagic proteins, Beclin1 and Atg7. Increased LC3II/I expression (which co-localized with lysosomal proteins, LAMP1 and Cathepsin B) showed that H2O2 treatment promoted autophagolysosome formation. In the results, both Beclin1 and Atg7 were observed co-localized in mitochondria, indicating their involvement in mitophagy. The evaluation of Erk1/2 in the presence and absence of Na-Pyruvate, PEG-Catalase, and PD98059 established ROS-Erk1/2 participation in autophagy regulation. Further, these findings showed a link between apoptosis and autophagy. The results conclude that H2O2 acts as a stressor, promoting autophagy and mitophagy in stem cells under oxidative stress. The current study may help understand better cell survival and death approaches for transplanted cells in various neurological diseases. The current study uses human Dental Pulp and Mesenchymal Stem cells to demonstrate the importance of H2O2-driven autophagy in deciding the fate of these cells in an oxidative microenvironment. To summarise, we discovered that exogenous H2O2 treatment causes oxidative stress. Exogenous H2O2  treatment also increased ROS production, especially intracellular H2O2. H2O2 stimulated the ErK1/2 signaling pathway and autophagy. Erk1/2 was found to cause autophagy. Further, the function of mitophagy appeared to be an important factor in the H2O2-induced regulation of these two human stem cell types. In a nutshell, by engaging in autophagy nucleation, maturation, and terminal phase proteins, we elucidated the participation of autophagy in cell dysfunction and death.


Asunto(s)
Peróxido de Hidrógeno , Células Madre Mesenquimatosas , Autofagia , Humanos , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo/fisiología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...