RESUMEN
Tuberculosis (TB), caused by Mycobacterium tuberculosis, ranks among the top causes of global human mortality, as reported by the World Health Organization's 2022 TB report. The prevalence of M. tuberculosis strains that are multiple and extensive-drug resistant represents a significant barrier to TB eradication. Fortunately, having many completely sequenced M. tuberculosis genomes available has made it possible to investigate the species pangenome, conduct a pan-phylogenetic investigation, and find potential new drug targets. The 442 complete genome dataset was used to estimate the pangenome of M. tuberculosis. This study involved phylogenomic classification and in-depth analyses. Sequential filters were applied to the conserved core genome containing 2754 proteins. These filters assessed non-human homology, virulence, essentiality, physiochemical properties, and pathway analysis. Through these intensive filtering approaches, promising broad-spectrum therapeutic targets were identified. These targets were docked with FDA-approved compounds readily available on the ZINC database. Selected highly ranked ligands with inhibitory potential include dihydroergotamine and abiraterone acetate. The effectiveness of the ligands has been supported by molecular dynamics simulation of the ligand-protein complexes, instilling optimism that the identified lead compounds may serve as a robust basis for the development of safe and efficient drugs for TB treatment, subject to further lead optimization and subsequent experimental validation.
Asunto(s)
Antituberculosos , Diseño de Fármacos , Mycobacterium tuberculosis , Proteómica , Tuberculosis , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Antituberculosos/farmacología , Humanos , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Proteómica/métodos , Genoma Bacteriano , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Filogenia , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Genómica/métodosRESUMEN
BACKGROUND: COVID-19 household transmissibility remains unclear in Pakistan. To understand the dynamics of Severe Acute Respiratory Syndrome Coronavirus disease epidemiology, this study estimated Secondary Attack Rate (SAR) among household and close contacts of index cases in Pakistan using a statistical transmission model. METHODOLOGY: A retrospective cohort study was conducted using an inclusive contact tracing dataset from the provinces of Punjab and Khyber-Pakhtunkhwa to estimate SAR. We considered the probability of an infected person transmitting the infection to close contacts regardless of residential addresses. This means that close contacts were identified irrespective of their relationship with the index case. We assessed demographic determinants of COVID-19 infectivity and transmissibility. For this purpose based on evolving evidence, and as CDC recommends fully vaccinated people get tested 5-7 days after close contact with a person with suspected or confirmed COVID-19. Therefore we followed the same procedure in the close contacts for secondary infection. FINDINGS: During the study period from 15th May 2020 to 15th Jan 2021, a total of 339 (33.9%) index cases were studied from 1000 cases initially notified. Among close contact groups (n = 739), households were identified with an assumed mean incubation period of 8.2+4.3 days and a maximum incubation period of 15 days. SAR estimated here is among the household contacts. 117 secondary cases from 739 household contacts, with SAR 11.1% (95% CI 9.0-13.6). All together (240) SAR achieved was 32.48% (95% CI; 29.12-37.87) for symptomatic and confirmed cases. The potential risk factors for SAR identified here included; old age group (>45 years of age), male (gender), household members >5, and residency in urban areas and for index cases high age group. Overall local reproductive number (R) based on the observed household contact frequencies for index/primary cases was 0.9 (95% CI 0.47-1.21) in Khyber Pakhtunkhwa and 1.3 (95% CI 0.73-1.56) in Punjab. CONCLUSIONS: SAR estimated here was high especially in the second phase of the COVID-19 pandemic in Pakistan. The results highlight the need to adopt rigorous preventive measures to cut the chain of viral transmission and prevent another wave of COVID-19.
Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , COVID-19/epidemiología , Humanos , Incidencia , Gripe Humana/epidemiología , Masculino , Persona de Mediana Edad , Pakistán/epidemiología , Pandemias , Estudios RetrospectivosRESUMEN
This case report describes a rare presentation of Streptococcus mitis endocarditis of the aortic and mitral valves, complicated by spontaneous splenic rupture due to splenic infarction, which led to massive intra-abdominal bleeding and ultimately death.