Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 532
Filtrar
1.
Nutr Metab (Lond) ; 21(1): 66, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39123239

RESUMEN

The gut microbiota and its secreted metabolites play a significant role in cardiovascular and musculoskeletal health and diseases. The dysregulation of the intestinal microbiota poses a significant threat to cardiovascular and skeletal muscle well-being. Nonetheless, the precise molecular mechanisms underlying these changes remain unclear. Furthermore, microgravity presents several challenges to cardiovascular and musculoskeletal health compromising muscle strength, endothelial dysfunction, and metabolic changes. The purpose of this review is to critically examine the role of gut microbiota metabolites on cardiovascular and skeletal muscle functions and dysfunctions. It also explores the molecular mechanisms that drive microgravity-induced deconditioning in both cardiovascular and skeletal muscle. Key findings in this review highlight that several alterations in gut microbiota and secreted metabolites in microgravity mirror characteristics seen in cardiovascular and skeletal muscle diseases. Those alterations include increased levels of Firmicutes/Bacteroidetes (F/B) ratio, elevated lipopolysaccharide levels (LPS), increased in para-cresol (p-cresol) and secondary metabolites, along with reduction in bile acids and Akkermansia muciniphila bacteria. Highlighting the potential, modulating gut microbiota in microgravity conditions could play a significant role in mitigating cardiovascular and skeletal muscle diseases not only during space flight but also in prolonged bed rest scenarios here on Earth.

2.
Int J Pharm ; 663: 124578, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39153643

RESUMEN

Interruption of wound healing by multi-drug resistant-bacterial infection is a harmful issue for the worldwide health care system, and conventional treatment approaches may not resolve this issue due to antimicrobial resistance. So, there is an unmet need to develop scaffolds with intrinsic wound healing properties to combat bacterial-infected wounds. Inspired by the α-lactalbumin's (Lalb's) ability to promote collagen synthesis, we herein electrospun Lalb with cephalexin (CPL) and epigallocatechin (EP) to produce nanofibers (CE-Lalb NFs) to solve this issue. The CE-Lalb NFs were prepared using the electrospinning technique and subjected to physicochemical characterizations, in vitro, and in vivo assessments. The CE-Lalb NFs promoted fibroblast migration, proliferation, and collagen synthesis, while CPL/EP annihilated MRSA and E. coli infections. Physicochemical characterizations proved the successful fabrication and doping of CE-Lalb NFs. Antimicrobial assays and fractional inhibitory concentration index (FICI) declared synergistic antibacterial activity of CE-Lalb NFs against MRSA and E. coli. The in vivo and immunohistochemical data evidenced its exceptional potential for wound healing, promoting growth factor, collagen synthesis, and reduced scar formation. The presence of mature collagen, fewer inflammatory cytokines, increased expression of blood vessels, and low expression of IL-6 at the wound site support in vitro and in vivo results. In our view, the tailored scaffold is the next step for personalized wound dressings that could meet patients with infected wounds' unmet needs by the subscription of noninvasive and easily navigable therapeutic options.

3.
Exp Parasitol ; : 108827, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39147119

RESUMEN

Tetrazoles are five-membered ring aromatic heterocyclic molecules that consist of one carbon and four nitrogen atoms. Several tetrazole-based drugs have shown promising activities against bacteria, fungi, asthma, cancer, hypertension etc. The overall aim of this study was to determine anti-Acanthamoebic properties of tetrazoles and tetrazole-conjugated silver nanoparticles. Tetrazole-conjugated silver nanoparticles were synthesized and confirmed using ultraviolet-visible spectrometry, Dynamic light scattering, and Fourier-transform infrared spectroscopy. Using amoebicidal, encystment, and excystment assays, the findings revealed that tetrazoles exhibited antiamoebic properties and these effects were enhanced when conjugated with silver nanoparticles. When tested for parasite killing, the minimum inhibitory concentration was reduced from ∼20µM with tetrazole alone to 10µM with tetrazole-conjugated silver nanoparticles. Importantly, conjugation with silver nanoparticles increased parasite-mediated human cell death in vitro, as measured by lactate dehydrogenase release, but it reduced toxic effects of drugs alone on human cells. In cytopathogenicity assays, the minimum inhibitory concentration was reduced from ∼15µM with tetrazole alone to less than 50µM with tetrazole-conjugated silver nanoparticles. Overall, these results showed clearly that tetrazoles exhibit potent antiamoebic properties which can be enhanced by conjugation with silver nanoparticles and have potential role in the rational development of therapeutic interventions against parasitic infections such as keratitis and granulomatous amoebic encephalitis due to pathogenic Acanthamoeba.

4.
Acta Parasitol ; 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39153011

RESUMEN

PURPOSE: The treatment of amoebic infections is often problematic, largely due to delayed diagnosis, amoebae transformation into resistant cyst form, and lack of availability of effective chemotherapeutic agents. Herein, we determined anti-Acanthamoeba castellanii properties of three metal oxide nanoparticles (TiO2, ZrO2, and Al2O3). METHODS: Amoebicidal assays were performed to determine whether metal oxide nanoparticles inhibit amoebae viability. Encystation assays were performed to test whether metal oxide nanoparticles inhibit cyst formation. By measuring lactate dehydrogenase release, cytotoxicity assays were performed to determine human cell damage. Hoechst 33342/PI staining was performed to determine programmed cell death (apoptosis) and necrosis in A. castellanii. RESULTS: TiO2-NPs significantly inhibited amoebae viability as observed through amoebicidal assays, as well as inhibited their phenotypic transformation as evident using encystation assays, and showed limited human cell damage as observed by measuring lactate dehydrogenase assays. Furthermore, TiO2-NPs altered parasite membranes and resulted in necrotic cell death as determined using double staining cell death assays with Hoechst33342/Propidium iodide (PI) observed through chromatin condensation. These findings suggest that TiO2-NPs offers a potential viable avenue in the rationale development of therapeutic interventions against Acanthamoeba infections.

5.
Cureus ; 16(6): e63445, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39077306

RESUMEN

Recent studies suggest a role for anthocyanins in the treatment of non-alcoholic fatty liver disease (NAFLD). The purpose of the present review was to assess the effect of anthocyanins as an adjuvant treatment in patients with NAFLD. The literature search was conducted on MEDLINE/PubMed, the Cochrane Central Register of Controlled Trials (CENTRAL), the Web of Science, and Scopus without language or time limits up to March 27, 2024. The primary outcomes included the severity of liver fibrosis and the level of liver transaminases. Secondary outcomes included obesity and lipid profile assessments. Standardized mean differences (SMDs) with 95% CIs were calculated for numerical outcomes. Five studies were included. The pooled effect sizes showed lower levels of liver fibrosis and liver transaminases in the anthocyanin group, but the difference was nonsignificant and small in size. The same result was obtained with anthropometric measurements of total cholesterol, low-density lipoprotein, and serum triglycerides, where effect sizes ranged from negligible to medium in magnitude but were all nonsignificant. The anthocyanin group showed a significantly lower body fat percentage (SMD = -0.41 (95%CI: -0.76; -0.06), P = 0.021). Currently, no evidence is available on the efficacy of anthocyanins in improving liver fibrosis or dyslipidemia in patients with NAFLD. There is limited evidence that anthocyanins can lower body fat percentages, but the effect was not reflected in the pooled results of other obesity indices. The few available clinical trials showed several limitations and variations regarding the doses of anthocyanins. Future clinical trials should avoid the limitations of the current studies and provide evidence supporting or refuting the use of anthocyanins in NAFLD patients.

6.
Heliyon ; 10(13): e33711, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39040300

RESUMEN

In this paper, we examine the Moderating Role of Governance on the Relationships between social inclusion (SI), Information and communication technology infrastructure (ICT), and financial inclusion (FI) in 46 countries representing a global sample span from 2010 to 2020. We collect the data from the IMF's financial access survey and construct a multidimensional FI index. Based on the FI index, we divide the sample into two sub-samples (med-high level and low-level FI countries). For the empirics, we employed panel-corrected standard errors, fully modified ordinary least squares and dynamic ordinary least squares techniques. We find that SI is negatively related to FI. ICT infrastructure positively influences FI. Further, we find that governance with sound ICT infrastructure and socially inclusive communities enhances FI. The findings of sub-samples are similar to the full sample results except for a promoting effect of SI and governance in the case of med-high financially inclusive economies. Moreover, the Interaction term of governance and ICT infrastructure is insignificant in med-high financially inclusive economies and negatively significant in low financially inclusive economies. Our study reports novel findings which have significant implications for policymakers and financial institutions to effectively develop and implement new policies which strengthen the institutional base, develop digital banking infrastructure, enhance SI to boost up FI and ensure sustainable economic growth.

7.
Sci Rep ; 14(1): 16908, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043685

RESUMEN

Biofiltration is a method of pollution management that utilizes a bioreactor containing live material to absorb and destroy pollutants biologically. In this paper, we investigate mathematical models of biofiltration for mixing volatile organic compounds (VOCs) for instance hydrophilic (methanol) and hydrophobic ( α -pinene). The system of nonlinear diffusion equations describes the Michaelis-Menten kinetics of the enzymic chemical reaction. These models represent the chemical oxidation in the gas phase and mass transmission within the air-biofilm junction. Furthermore, for the numerical study of the saturation of α -pinene and methanol in the biofilm and gas state, we have developed an efficient supervised machine learning algorithm based on the architecture of Elman neural networks (ENN). Moreover, the Levenberg-Marquardt (LM) optimization paradigm is used to find the parameters/ neurons involved in the ENN architecture. The approximation to a solutions found by the ENN-LM technique for methanol saturation and α -pinene under variations in different physical parameters are allegorized with the numerical results computed by state-of-the-art techniques. The graphical and statistical illustration of indications of performance relative to the terms of absolute errors, mean absolute deviations, computational complexity, and mean square error validates that our results perfectly describe the real-life situation and can further be used for problems arising in chemical engineering.

8.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39065806

RESUMEN

Oxidative stress impairs the structure and function of the cell, leading to serious chronic diseases. Antioxidant-based therapeutic and nutritional interventions are usually employed for combating oxidative stress-related disorders, including apoptosis. Here, we investigated the hepatoprotective effect of oligosaccharides, produced through Pichia pastoris-mediated fermentation of water-soluble polysaccharides isolated from Lepidium sativum (cress) seed mucilage, on chromium(VI)-induced oxidative stress and apoptosis in mice. Gel permeation chromatography (GPC), using Bio-Gel P-10 column, of the oligosaccharides product of fermentation revealed that P. pastoris effectively fermented polysaccharides as no long chain polysaccharides were observed. At 200 µg/mL, fractions DF73, DF53, DF72, and DF62 exhibited DPPH radical scavenging activity of 92.22 ± 2.69%, 90.35 ± 0.43%, 88.83 ± 3.36%, and 88.83 ± 3.36%, respectively. The antioxidant potential of the fermentation product was further confirmed through in vitro H2O2 radical scavenging assay. Among the screened samples, the highest H2O2 radical scavenging activity was displayed by DF73, which stabilized the free radicals by 88.83 ± 0.38%, followed by DF53 (86.48 ± 0.83%), DF62 (85.21 ± 6.66%), DF72 (79.9 4± 1.21%), and EPP (77.76 ± 0.53%). The oligosaccharide treatment significantly alleviated chromium-induced liver damage, as evident from the increase in weight gain, improved liver functions, and reduced histopathological alterations in the albino mice. A distinctly increased level of lipid peroxide (LPO) free radicals along with the endogenous hepatic enzymes were evident in chromium induced hepatotoxicity in mice. However, oligosaccharides treatment mitigated these effects by reducing the LPO production and increasing ALT, ALP, and AST levels, probably due to relieving the oxidative stress. DNA fragmentation assays illustrated that Cr(VI) exposure induced massive apoptosis in liver by damaging the DNA which was then remediated by oligosaccharides supplementation. Histopathological observations confirmed that the oligosaccharide treatment reverses the architectural changes in liver induced by chromium. These results suggest that oligosaccharides obtained from cress seed mucilage polysaccharides through P. pastoris fermentation ameliorate the oxidative stress and apoptosis and act as hepatoprotective agent against chromium-induced liver injury.

9.
J Ethnopharmacol ; 335: 118625, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39053706

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The safety assessment of herbal products is critical for their appropriate pharmacological applications. Garcinia cowa Roxb., commonly known as Cha-muang in Thai, has ethnopharmacological relevance for inflammation, infectious diseases, and diabetes. The leaf extracts of G. cowa have been extensively reported for their anticancer, anti-inflammatory, antimicrobial, and antioxidant effects. Notably, chamuangone is their major active constituent that contributes to various pharmacological properties. AIM OF THE STUDY: The current study aims to establish a standardized chamuangone enriched extract (CEE) and assess its acute and sub-acute toxicities in animal models. METHODOLOGY: CEE was established from G. cowa leaves using a microwave-assisted extraction (MAE), followed by fractionation and enrichment through silica gel vacuum and column chromatography. The concentration of chamuangone in the extract was quantified using a validated quantitative high-performance liquid chromatography (HPLC) method. The safety profiles of CEE were thoroughly evaluated in rodents according to the Organization for Economic Cooperation and Development (OECD) 425 and 407 guidelines. The effects on oxidative stress markers such as superoxide dismutase (SOD), reduced glutathione (GSH), catalase (CAT), and malondialdehyde (MDA) levels were also evaluated in various organs. RESULTS: Based on the quantitative HPLC analysis, the CEE contained 73.0 ± 2.0% w/w of chamuangone. In the acute toxicity study, following up and down procedure the female rats were dosed with CEE at 1750 and 550 mg/kg body weight (b.w.), with CEE 1750 mg/kg b.w. was toxic, causing mortality, while CEE 550 mg/kg b.w. was deemed safe. An LD50 value was calculated according to the standard protocols, resulting in 970 mg/kg b.w. In histopathological examination, 550 mg/kg b.w. of CEE was safe in all the selected organs, while the 1750 mg/kg b.w. CEE treated rats exhibited toxic effects in histological tissues sections in the form of necrosis in the brain, cardiac muscle hypertrophy, liver inflammation, mild untoward effect in the spleen, fibrosis in the lungs, pancreatitis, pyelonephritis, and ovarian cyst. Administration of CEE at doses of 550 mg/kg b.w. (single dose) in the acute and 100 mg/kg b.w. (regularly 28-days) in the sub-acute toxicity studies significantly (p < 0.05) decreased levels of uric acid, triglycerides, and cholesterol. Importantly, the CEE (550 and 100 mg/kg b.w.) also significantly increased the levels of antioxidant enzymes (SOD, GSH, and CAT) and decreased MDA levels. Normal histopathology was observed in the sub-acute toxicity study in all treated groups. CONCLUSION: This study successfully concludes that CEE at a dose of 100 mg/kg b.w. is safe for therapeutic application or use as a chemopreventive functional food utilizing green extraction methods. However, chronic toxicity studies are further recommended to validate safety concerns over an extended period.

10.
Int J Biol Macromol ; 277(Pt 2): 134166, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39084444

RESUMEN

Superficial skin injuries especially burn injuries and unhealed diabetic foot open wounds remain troubling for public health. The healing process is often interrupted by the invasion of resistant pathogens that results in the failure of conventional procedures outside the clinical settings. Herein, we designed nanofibers dressing with intrinsic antibacterial potential of poly(vinyl-pyrrolidone)-iodine/ poly (vinyl)-alcohol by electrospinning with chitosan encapsulating ceftriaxone (CPC/NFs). The optimized electrospun CPC/NFs exhibited smooth surface morphology with average diameter of 165 ± 7.1 nm, drug entrapment and loading efficiencies of 76.97 ± 4.7 % and 8.32 ± 1.73 %, respectively. The results displayed smooth and uniformed fibers with adequate thermal stability and ensured chemical doping. The enhanced in vitro antibacterial efficacy of CPC/NFs against resistant E. coli isolates and biosafety studies encourage the use of designed nanofibers dressing for burn injuries and diabetic foot injuries. In vivo studies proved the healing power of dressing for burn wounds model and diabetic infected wounds model. Immunofluorescence investigation of the wound tissue also suggested promising healing ability of CPC/NFs. The designed approach would be helpful to treat these infected skin open wounds in the hospitals and outside the clinical settings.

11.
Ann Card Anaesth ; 27(3): 274-276, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38963368

RESUMEN

ABSTRACT: Peri-operative management of cyanotic congenital heart disease in a patient of sickle cell disease (SCD) can be challenging. We report a case of Tetralogy of Fallot and homozygous SCD with history of multiple blood transfusions and sickle cell crises who underwent intracardiac repair. Hemoglobin S level was reduced from 75% pre-operative to 21.8% postoperative with a combination of pre-operative blood transfusion, intraoperative exchange transfusion, and normothermic cardiopulmonary bypass (CPB). Pre-operative optimization and safe intraoperative conduct were essential to avoid sickling crises.


Asunto(s)
Anemia de Células Falciformes , Puente Cardiopulmonar , Atención Perioperativa , Tetralogía de Fallot , Humanos , Tetralogía de Fallot/cirugía , Tetralogía de Fallot/complicaciones , Anemia de Células Falciformes/complicaciones , Atención Perioperativa/métodos , Puente Cardiopulmonar/métodos , Transfusión Sanguínea/métodos , Masculino , Femenino
12.
Nature ; 631(8022): 819-825, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38843826

RESUMEN

Horses revolutionized human history with fast mobility1. However, the timeline between their domestication and their widespread integration as a means of transport remains contentious2-4. Here we assemble a collection of 475 ancient horse genomes to assess the period when these animals were first reshaped by human agency in Eurasia. We find that reproductive control of the modern domestic lineage emerged around 2200 BCE, through close-kin mating and shortened generation times. Reproductive control emerged following a severe domestication bottleneck starting no earlier than approximately 2700 BCE, and coincided with a sudden expansion across Eurasia that ultimately resulted in the replacement of nearly every local horse lineage. This expansion marked the rise of widespread horse-based mobility in human history, which refutes the commonly held narrative of large horse herds accompanying the massive migration of steppe peoples across Europe around 3000 BCE and earlier3,5. Finally, we detect significantly shortened generation times at Botai around 3500 BCE, a settlement from central Asia associated with corrals and a subsistence economy centred on horses6,7. This supports local horse husbandry before the rise of modern domestic bloodlines.


Asunto(s)
Crianza de Animales Domésticos , Domesticación , Caballos , Transportes , Animales , Femenino , Masculino , Crianza de Animales Domésticos/historia , Asia , Europa (Continente) , Genoma/genética , Historia Antigua , Caballos/clasificación , Caballos/genética , Reproducción , Transportes/historia , Transportes/métodos , Filogenia
13.
Artículo en Inglés | MEDLINE | ID: mdl-38869777

RESUMEN

Herein, we investigated the anti-amoebic activity of phosphonium-chloride-based deep eutectic solvents against pathogenic Acanthamoeba castellanii of the T4 genotype. Deep eutectic solvents are ionic fluids composed of two or three substances, capable of self-association to form a eutectic mixture with a melting point lower than each substance. In this study, three distinct hydrophobic deep eutectic solvents were formulated, employing trihexyltetradecylphosphonium chloride as the hydrogen bond acceptor and aspirin, dodecanoic acid, and 4-tert-butylbenzoic acid as the hydrogen bond donors. Subsequently, all three deep eutectic solvents, denoted as DES1, DES2, DES3 formulations, underwent investigations comprising amoebicidal, adhesion, excystation, cytotoxicity, and cytopathogenicity assays. The findings revealed that DES2 was the most potent anti-amoebic agent, with a 94% elimination rate against the amoebae within 24 h at 30 °C. Adhesion assays revealed that deep eutectic solvents hindered amoebae adhesion to human brain endothelial cells, with DES2 exhibiting 88% reduction of adhesion. Notably, DES3 exhibited remarkable anti-excystation properties, preventing 94% of cysts from reverting to trophozoites. In cytopathogenicity experiments, deep eutectic solvent formulations and dodecanoic acid alone reduced amoebae-induced human brain endothelial cell death, with DES2 showing the highest effects. Lactate dehydrogenase assays revealed the minimal cytotoxicity of the tested deep eutectic solvents, with the exception of trihexyltetradecylphosphonium chloride, which exhibited 35% endothelial cell damage. These findings underscore the potential of specific deep eutectic solvents in combating pathogenic Acanthamoeba, presenting promising avenues for further research and development against free-living amoebae.

14.
Parasitol Res ; 123(6): 241, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864931

RESUMEN

Managing primary amoebic meningoencephalitis, induced by Naegleria fowleri poses a complex medical challenge. There is currently no specific anti-amoebic drug that has proven effectiveness against N. fowleri infection. Ongoing research endeavours are dedicated to uncovering innovative treatment strategies, including the utilization of drugs and immune modulators targeting Naegleria infection. In this study, we explored the potential of imidazo[2,1-b]thiazole and imidazooxazole derivatives that incorporate sulfonate and sulfamate groups as agents with anti-amoebic properties against N. fowleri. We assessed several synthesized compounds (1f, 1m, 1q, 1s, and 1t) for their efficacy in eliminating amoebae, their impact on cytotoxicity, and their influence on the damage caused to human cerebral microvascular endothelial (HBEC-5i) cells when exposed to the N. fowleri (ATCC 30174) strain. The outcomes revealed that, among the five compounds under examination, 1m, 1q, and 1t demonstrated notable anti-parasitic effects against N. fowleri (P ≤ 0.05). Compound 1t exhibited the highest anti-parasitic activity, reducing N. fowleri population by 80%. Additionally, three compounds, 1m, 1q, and 1t, significantly mitigated the damage inflicted on host cells by N. fowleri. However, the results of cytotoxicity analysis indicated that while 1m and 1q had minimal cytotoxic effects on endothelial cells, compound 1t caused moderate cytotoxicity (34%). Consequently, we conclude that imidazo[2,1-b]thiazole and imidazooxazole derivatives containing sulfonate and sulfamate groups exhibit a marked capacity to eliminate amoebae viability while causing limited toxicity to human cells. In aggregate, these findings hold promise that could potentially evolve into novel therapeutic options for treating N. fowleri infection.


Asunto(s)
Antiprotozoarios , Células Endoteliales , Naegleria fowleri , Tiazoles , Humanos , Tiazoles/farmacología , Tiazoles/química , Naegleria fowleri/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Antiprotozoarios/farmacología , Antiprotozoarios/química , Antiprotozoarios/síntesis química , Línea Celular , Imidazoles/farmacología , Imidazoles/química , Imidazoles/síntesis química , Oxazoles/farmacología , Oxazoles/química , Supervivencia Celular/efectos de los fármacos
15.
Int Immunopharmacol ; 134: 112205, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38718659

RESUMEN

Current methods for delivering genes to target tumors face significant challenges, including off-target effects and immune responses against delivery vectors. In this study, we developed a novel approach using messenger RNA (mRNA) to encode IL11RA for local immunotherapy, aiming to harness the immune system to combat tumors. Our research uncovered a compelling correlation between IL11RA expression and CD8 + T cell levels across multiple tumor types, with elevated IL11RA expression correlating with improved overall survival. Examination of the Pan-Cancer Atlas dataset showed a significant reduction in IL11RA expression in various cancer types compared to normal tissue, raising questions about its potential role in tumorigenesis. To achieve efficient in vivo expression of IL11RA, we synthesized two mRNA sequences mimicking the wild-type protein. These mRNA sequences were formulated and capped to ensure effective delivery, resulting in robust expression within tumor sites. Our investigation into IL11RA mRNA therapy demonstrated its effectiveness in controlling tumor growth when administered both intratumorally and intravenously in mouse models. Additionally, IL11RA mRNA treatment significantly stimulated the expansion of CD8 + T cells within tumors, draining lymph nodes, and the spleen. Transcriptome analysis revealed distinct transcriptional patterns associated with T cell functions. Using multiple deconvolution algorithms, we found substantial infiltration of CD8 + T cells following IL11RA mRNA treatment, highlighting its immunomodulatory effects within the tumor microenvironment. In conclusion, IL11RA mRNA therapy presents a promising strategy for tumor regression with potential immunomodulatory effects and clinical implications for improved survival outcomes.


Asunto(s)
Linfocitos T CD8-positivos , Inmunoterapia , ARN Mensajero , Animales , ARN Mensajero/genética , ARN Mensajero/metabolismo , Inmunoterapia/métodos , Linfocitos T CD8-positivos/inmunología , Humanos , Ratones , Ratones Endogámicos C57BL , Línea Celular Tumoral , Femenino , Subunidad alfa del Receptor de Interleucina-11/genética , Neoplasias/terapia , Neoplasias/inmunología , Neoplasias/genética , Microambiente Tumoral/inmunología , Regulación Neoplásica de la Expresión Génica
16.
Cureus ; 16(4): e58179, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38741848

RESUMEN

The delayed presentation of a 15-year-old female with a complex Grade 4 liver injury and a concurrent Grade 1 renal injury sustained from a fall exemplifies the heightened vulnerability of adolescents to blunt hepatic trauma. Unlike typical presentations where symptoms like abdominal pain and internal bleeding appear immediately, this case emphasises the potential for delayed manifestation, posing unique challenges for diagnosis and management. This case, managed at a leading trauma centre, underscores the distinct challenges compared to adult cases due to adolescents' larger space available for the organ and immature livers. While presenting more management complexity than typical splenic injuries, prompt intervention with emergency laparotomy and hepatic packing proved crucial for the patient's successful outcome. This case emphasises the critical role of early identification, vigilant monitoring, and strict activity restrictions post-operatively for optimal adolescent liver trauma management and serves as a reminder of the spectrum of potential injuries, including bile duct and vascular damage alongside contusions and haematomas.

17.
Int J Pharm X ; 7: 100252, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38766479

RESUMEN

Biomimetic nanoparticles represent a promising avenue for mitigating rapid clearance by the reticuloendothelial system (RES); however, current challenges include insufficient tumour targeting, suboptimal adhesion, and inadequate localized drug release within tumour regions. These shortcomings contribute to persistent contests, such as recurrence and pulmonary metastasis, even with advanced breast cancer therapies. Stimuli-sensitive drug release can furbish the membrane coated nanoparticles for their efficiency against the stated problems. To enhance the efficacy of biomimetic nanoparticles in addressing these issues, we proposed a versatile, stimuli-responsive drug delivery system by encapsulating doxorubicin (Dox) and perfluorohexane (PFH) within poly (lactic-co-glycolic acid) (PLGA) nanoparticles, subsequently coated with macrophage-derived cell membranes. Within this framework, PFH serves as the mediator for ultrasonic (US)-irradiation-triggered drug release specifically within tumour microenvironment, while the macrophage-derived cell membrane coating enhances cell adhesion, enables immune evasion, and natural tumour-homing ability. The characterization assays and in vitro evaluations yielded encouraging results, indicating enhanced targeting and release efficiencies. In vivo studies demonstrated marked inhibitory effects on both breast cancer recurrence and pulmonary metastasis. The resulting data indicate that these engineered nanoparticles have notable potential for targeted delivery and controlled release upon US irradiation, thereby offering significant therapeutic efficacy against primary breast cancer, pulmonary metastasis, and recurrent malignancies. Our findings lay the groundwork for a novel clinical approach, representing an intriguing direction for ongoing investigation by oncologists.

18.
RSC Med Chem ; 15(5): 1578-1588, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38784450

RESUMEN

Acanthamoeba castellanii is an opportunistic pathogen with public health implications, largely due to its invasive nature and non-specific symptoms. Our study focuses on the potential of azole compounds, particularly those with triazole scaffolds, as anti-amoebic agents. Out of 10 compounds, compounds T1 and T8 exhibited effective anti-Acanthamoeba activity with MIC50 values of 125.37 and 143.92 µg mL-1, respectively. Interestingly, compounds T1, T4, T5 and T8 revealed profound anti-excystation activity with MIC50 at 32.01, 85.53, 19.54 and 80.57 µg mL-1, respectively, alongside limited cytotoxicity to human cells. The study underscores the potential of T1, T4, T5, and T8, thiazole-based compounds, as anti-Acanthamoeba agents by both eliminating amoeba viability and preventing excystation, via preserving the amoeba in its latent cyst form, exposing them to elimination by the immune system. Notably, compounds T1, T4, T5, and T8 showed optimal molecular properties, moderate oral bioavailability, and stable complex formation with Acanthamoeba CYP51. They also display superior binding interactions. Further research is needed to understand their mechanisms and optimize their efficacy against Acanthamoeba infections.

19.
Cureus ; 16(4): e58745, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38779274

RESUMEN

Introduction A traumatic brain injury (TBI) is one of the leading causes of injury-related deaths, making it a public health concern of extreme importance. In a developing country such as Pakistan, TBIs are significantly underreported, with the treatment frequently being delayed and inadequate, especially in rural healthcare setups all across the country. This concern is further magnified by insufficient epidemiological data on TBIs available in Pakistan. The coronavirus disease 2019 (COVID-19) pandemic brought consequential changes to the healthcare system with the priority shifting toward COVID-19 patients, resulting in considerable changes to the workflow and management of TBIs. The primary objective of this study is to offer valuable insights into the epidemiology of TBIs in Pakistan and its relationship with the impact of the COVID-19 pandemic.  Methods A retrospective study was conducted at a tertiary care center in a metropolitan city in Pakistan. Patient charts were reviewed from January to August 2020, and data was extracted including demographics, clinical presentation, management, and outcomes for cases of TBI. Results The total number of patients is 2126, male 78% and female 21.4%. The mean age of the patients was 28.85. The state of admissions at the hospital is at 99.7% for EME admissions and 0.282% for OPD admissions. Participants presented with loss of consciousness (70.7%), nosebleeds, (53.2%), vomiting (69.0%), and seizures (11.5%). The majority (51.1%) were related to road traffic accidents, followed by falls (20.7%), and assaults (4%). While 1202 (58.5%) of these were managed conservatively, others underwent surgical treatment in the form of craniotomy (28.0%), Burr holes (3.20%), and fracture elevation and repair (10.5%). A decrease in the number of reported TBI cases was observed with lockdown implementation in Pakistan. Conclusion The transportation sector in Pakistan was severely affected by the COVID-19 pandemic, leading to a decline in road traffic injuries and TBIs. Stringent mobility constraints and changes in societal and cultural norms have contributed to this reduction.

20.
Biometals ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38705945

RESUMEN

With the emergence of drug-resistance, there is a need for novel anti-bacterials or to enhance the efficacy of existing drugs. In this study, Patuletin (PA), a flavanoid was loaded onto Gallic acid modified Zinc oxide nanoparticles (PA-GA-ZnO), and evaluated for antibacterial properties against Gram-positive (Bacillus cereus and Streptococcus pneumoniae) and Gram-negative (Samonella enterica and Escherichia coli) bacteria. Characterization of PA, GA-ZnO and PA-GA-ZnO' nanoparticles was accomplished utilizing fourier-transform infrared spectroscopy, efficiency of drug entrapment, polydispersity index, zeta potential, size, and surface morphology analysis through atomic force microscopy. Using bactericidal assays, the results revealed that ZnO conjugation displayed remarkable effects and enhanced Patuletin's effects against both Gram-positive and Gram-negative bacteria, with the minimum inhibitory concentration observed at micromolar concentrations. Cytopathogenicity assays exhibited that the drug-nanoconjugates reduced bacterial-mediated human cell death with minimal side effects to human cells. When tested alone, drug-nanoconjugates tested in this study showed limited toxic effects against human cells in vitro. These are promising findings, but future work is needed to understand the molecular mechanisms of effects of drug-nanoconjugates against bacterial pathogens, in addition to in vivo testing to determine their translational value. This study suggests that Patuletin-loaded nano-formulation (PA-GA-ZnO) may be implicated in a multi-target mechanism that affects both Gram-positive and Gram-negative pathogen cell structures, however this needs to be ascertained in future work.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...