Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Sci Rep ; 14(1): 12701, 2024 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831069

RESUMEN

The distinctive characteristics of nanoparticles and their potential applications have been given considerable attention by scientists across different fields, particularly agriculture. However, there has been limited effort to assess the impact of copper nanoparticles (CuNPs) in modulating physiological and biochemical processes in response to salt-induced stress. This study aimed to synthesize CuNPs biologically using Solenostemma argel extract and determine their effects on morphophysiological parameters and antioxidant defense system of barley (Hordeum vulgare) under salt stress. The biosynthesized CuNPs were characterized by (UV-vis spectroscopy with Surface Plasmon Resonance at 320 nm, the crystalline nature of the formed NPs was verified via XRD, the FTIR recorded the presence of the functional groups, while TEM was confirmed the shape (spherical) and the sizes (9 to 18 nm) of biosynthesized CuNPs. Seeds of barley plants were grown in plastic pots and exposed to different levels of salt (0, 100 and 200 mM NaCl). Our findings revealed that the supplementation of CuNPs (0, 25 and 50 mg/L) to salinized barley significantly mitigate the negative impacts of salt stress and enhanced the plant growth-related parameters. High salinity level enhanced the oxidative damage by raising the concentrations of osmolytes (soluble protein, soluble sugar, and proline), malondialdehyde (MDA) and hydrogen peroxide (H2O2). In addition, increasing the activities of enzymatic antioxidants, total phenol, and flavonoids. Interestingly, exposing CuNPs on salt-stressed plants enhanced the plant-growth characteristics, photosynthetic pigments, and gas exchange parameters. Furthermore, CuNPs counteracted oxidative damage by lowering the accumulation of osmolytes, H2O2, MDA, total phenol, and flavonoids, while simultaneously enhancing the activities of antioxidant enzymes. In conclusion, the application of biosynthesized CuNPs presents a promising approach and sustainable strategy to enhance plant resistance to salinity stress, surpassing conventional methods in terms of environmental balance.


Asunto(s)
Antioxidantes , Cobre , Hordeum , Nanopartículas del Metal , Tolerancia a la Sal , Hordeum/efectos de los fármacos , Hordeum/metabolismo , Hordeum/crecimiento & desarrollo , Nanopartículas del Metal/química , Tolerancia a la Sal/efectos de los fármacos , Antioxidantes/metabolismo , Lamiaceae/efectos de los fármacos , Lamiaceae/metabolismo , Lamiaceae/crecimiento & desarrollo , Lamiaceae/fisiología , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales , Malondialdehído/metabolismo , Estrés Salino
2.
Can J Neurol Sci ; 51(2): 179-186, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36803520

RESUMEN

BACKGROUND: Contact heat is commonly used in experimental research to evoke brain activity, most frequently acquired with electroencephalography (EEG). Although magnetoencephalography (MEG) improves spatial resolution, using some contact heat stimulators with MEG can present methodological challenges. This systematic review assesses studies that utilise contact heat in MEG, their findings and possible directions for further research. METHODS: Eight electronic databases were searched for relevant studies, in addition to the selected papers' reference lists, citations and ConnectedPapers maps. Best practice recommendations for systematic reviews were followed. Papers met inclusion criteria if they used MEG to record brain activity in conjunction with contact heat, regardless of stimulator equipment or paradigm. RESULTS: Of 646 search results, seven studies met the inclusion criteria. Studies demonstrated effective electromagnetic artefact removal from MEG data, the ability to elicit affective anticipation and differences in deep brain stimulation responders. We identify contact heat stimulus parameters that should be reported in publications to ensure comparisons between data outcomes are consistent. CONCLUSIONS: Contact heat is a viable alternative to laser or electrical stimulation in experimental research, and methods exist to successfully mitigate any electromagnetic noise generated by PATHWAY CHEPS equipment - though there is a dearth of literature exploring the post-stimulus time window.


Asunto(s)
Calor , Magnetoencefalografía , Humanos , Magnetoencefalografía/métodos , Revisiones Sistemáticas como Asunto , Electroencefalografía , Fenómenos Electromagnéticos , Encéfalo/fisiología , Mapeo Encefálico
3.
J Biosci ; 482023.
Artículo en Inglés | MEDLINE | ID: mdl-38088377

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is readily transmitted from person to person. We evaluated the emerging landscape of SARS-CoV-2 variants in Bangladesh from a retrospective study of nasopharyngeal swabs collected from 130 SARS-CoV-2-positive cases randomly selected over 6 months. Mutation analysis of whole-genome sequencing of 130 SARS-CoV-2 variants revealed 528 unique coding mutations, of which 102 were deletions, 6 were premature stop codons, and the remaining were substitutions. The most common mutation in the cohort was ORF1b:P314L, with a frequency of 98.5%. A total of 132 unique coding mutations were observed in the spike protein gene. Fourteen mutations were mapped to the spike protein receptor binding domain (RBD). These mutations increase the affinity between the spike protein and its human receptor, angiotensin converting enzyme 2 (ACE2), thereby increasing SARS-CoV-2 transmissibility. This study will help understand the SARS-CoV-2 virus and ultimately aid in monitoring and combatting the COVID-19 pandemic by furthering research on appropriate therapies. Analysis of age revealed closer association of the Delta variant with older populations and of the Omicron variant with younger populations. This may have important implications on how we monitor infections, distribute vaccines, and treat patients based on their ages.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiología , Pandemias , Bangladesh/epidemiología , Prueba de COVID-19 , Estudios Retrospectivos , Glicoproteína de la Espiga del Coronavirus/genética , Mutación , Unión Proteica
4.
Biologicals ; 84: 101714, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37804694

RESUMEN

In the present study, we report the complete genome of five Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) from Bangladesh harboring mutations at Spike protein (E484K, Q677H, D614G, A67V, Q52R, Y144del, H69del, V70del, F888L) assigned to the B.1.525 lineage (Variant of interest). Mutations are also found in viral structural proteins other than spike region (E_L21F, M_I82F, N_A12G and N_T208I) and other mutations (NSP3_T1189I, NSP6_S106del, NSP6_F108del, NSP6_G107del, NSP12_P323F) from all of five B.1.525 SARS-CoV-2 variants of Bangladesh. We have also found four unique mutations from two of SARS-CoV-2 B.1.525 variant of Bangladesh. Among the four unique mutations two mutations (NS7a_L96H, NS7a_Y97D) obtained from strain BCSIR-NILMRC-718, one (NSP3_A1430V) from BCSIR-NILMRC-738 and two mutation including one spike protein mutation (NSP2_L444I, Spike_I68 M) present in BCSIR-AFIP-10 strain. The identification of new mutations will contribute to characterizing SARS-CoV-2, to continue tracking its spread and better understanding its biological and clinical features to take medical countermeasures and vaccines.


Asunto(s)
COVID-19 , Humanos , Bangladesh , COVID-19/genética , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Mutación
5.
Environ Sci Pollut Res Int ; 30(53): 114140-114151, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37858027

RESUMEN

Climate change issues present substantial obstacles to the global community's stability and humanity's overall welfare. Reducing carbon emissions is crucial in attaining environmental sustainability and addressing the consequences of SDG 13 (climate actions). The G7 nations, representing some of the largest economies globally and significantly contributing to global carbon emissions, have achieved certain advancements in mitigating their carbon footprint. Nevertheless, the attainment of carbon neutrality continues to pose a substantial obstacle. This study examines the mechanisms leading to environmental sustainability in G7 economies, explicitly emphasizing the contribution of research and development (R&D) toward attaining carbon neutrality. The present study utilizes G7 data from 1990 to 2020 to conduct an empirical analysis employing a cross-sectional autoregressive distributed lag (CSARDL) panel model. The primary objective of this investigation is to examine the influence of R&D expenditure (R&DE) on carbon emissions metric ton (CO2Mt). Furthermore, this study investigates the current state of the EKC in the economies of the G7 nations, as well as the influence of renewable energy (RE) and non-renewable energy (NRE) on CO2Mt. The results suggest that R&DE is critical in mitigating CO2Mt and attaining carbon neutrality. The study also validates the EKC implies a negative and non-linear relationship between growth and CO2Mt. Moreover, renewable and non-renewable energy validate their respective negative and positive effects on CO2Mt. The findings of our study offer valuable insights for policymakers in the G7 nations, aiding them in developing effective regulatory measures for achieving carbon neutrality goals.


Asunto(s)
Carbono , Condiciones Sociales , Estudios Transversales , Huella de Carbono , Investigación , Dióxido de Carbono , Desarrollo Económico , Energía Renovable
6.
Environ Sci Pollut Res Int ; 30(48): 105912-105926, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37718367

RESUMEN

The Belt and Road Initiative (BRI) is a significant economic development strategy directed by China. Its primary objective is to establish connectivity across a vast region encompassing over 70 countries in Asia, Europe, and Africa. This endeavor significantly impacts worldwide development, economic advancement, and environmental sustainability. Nevertheless, insufficient pertinent evidence exists when exploring the correlation between urbanization, rural energy poverty (Rural_EP), and carbon emissions (CO2_Em) in the BRI region. The present study examines panel data encompassing 48 countries participating in BRI from 2001 to 2020. This research addresses existing gaps by employing the System-GMM and Driscoll and Kraay Standard Error (DKSE) models to investigate factors influencing CO2_Em. The findings indicate that the presence of energy poverty in rural areas is associated with higher levels of CO2_Em, while urbanization has a mitigating effect on such emissions. Furthermore, adopting production methods and environmentally sustainable technologies by foreign corporations leads to a decrease in CO2_Em, thereby providing evidence of a pollution halo effect in BRI. Moreover, economic growth and industrialization have detrimental environmental consequences, primarily through the amplification of CO2_Em. Based on the empirical evidence, the study proposes policy measures that advocate for promoting renewable energy sources, adopting sustainable urban development practices, implementing energy conservation strategies, and establishing carbon pricing mechanisms.


Asunto(s)
Dióxido de Carbono , Urbanización , Dióxido de Carbono/análisis , Carbono , Asia , Pobreza , Desarrollo Económico , Energía Renovable
7.
Metabolites ; 13(8)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37623850

RESUMEN

The implementation of nanotechnology in the field of plant tissue culture has demonstrated an interesting impact on in vitro plant growth and development. Furthermore, the plant tissue culture accompanying nanoparticles has been showed to be a reliable alternative for the biosynthesis of secondary metabolites. Herein, the effectiveness of zinc oxide nanoparticles (ZnONPs) on the growth of Delonix elata calli, as well as their phytochemical profiles, were investigated. Delonix elata seeds were collected and germinated, and then the plant species was determined based on the PCR product sequence of ITS1 and ITS4 primers. Afterward, the calli derived from Delonix elata seedlings were subjected to 0, 10, 20, 30, 40, and 50 mg/L of ZnONPs. The ZnONPs were biologically synthesized using the Ricinus communis aqueous leaf extract, which acts as a capping and reducing agent, and zinc nitrate solution. The nanostructures of the biogenic ZnONPs were confirmed using different techniques like UV-visible spectroscopy (UV), zeta potential measurement, Fourier transform infrared spectra (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Adding 30 mg/L of ZnONPs to the MS media (containing 2.5 µM 2,4-D and 1 µM BAP) resulted in the highest callus fresh weight (5.65 g) compared to the control and other ZnONP treatments. Similarly, more phenolic accumulation (358.85 µg/g DW) and flavonoid (112.88 µg/g DW) contents were achieved at 30 mg/L. Furthermore, the high-performance liquid chromatography (HPLC) analysis showed significant increments in gallic acid, quercetin, hesperidin, and rutin in all treated ZnONP calli compared to the control. On the other hand, the gas chromatography and mass spectroscopy (GC-MS) analysis of the calli extracts revealed that nine phytochemical compounds were common among all extracts. Moreover, the most predominant compound found in calli treated with 20, 30, 40, and 50 mg/L of ZnONPs was bis(2-ethylhexyl) phthalate, with percentage areas of 27.33, 38.68, 22.66, and 17.98%, respectively. The predominant compounds in the control and in calli treated with 10 mg/L of ZnONPs were octadecanoic acid, 2-propenyl ester and heptanoic acid. In conclusion, in this study, green ZnONPs exerted beneficial effects on Delonix elata calli and improved their production of bioactive compounds, especially at a dose of 30 mg/L.

8.
Sci Rep ; 13(1): 13146, 2023 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-37573409

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of COVID -19, is constantly evolving, requiring continuous genomic surveillance. In this study, we used whole-genome sequencing to investigate the genetic epidemiology of SARS-CoV-2 in Bangladesh, with particular emphasis on identifying dominant variants and associated mutations. We used high-throughput next-generation sequencing (NGS) to obtain DNA sequences from COVID-19 patient samples and compared these sequences to the Wuhan SARS-CoV-2 reference genome using the Global Initiative for Sharing All Influenza Data (GISAID). Our phylogenetic and mutational analyzes revealed that the majority (88%) of the samples belonged to the pangolin lineage B.1.1.25, whereas the remaining 11% were assigned to the parental lineage B.1.1. Two main mutations, D614G and P681R, were identified in the spike protein sequences of the samples. The D614G mutation, which is the most common, decreases S1 domain flexibility, whereas the P681R mutation may increase the severity of viral infections by increasing the binding affinity between the spike protein and the ACE2 receptor. We employed molecular modeling techniques, including protein modeling, molecular docking, and quantum mechanics/molecular mechanics (QM/MM) geometry optimization, to build and validate three-dimensional models of the S_D614G-ACE2 and S_P681R-ACE2 complexes from the predominant strains. The description of the binding mode and intermolecular contacts of the referenced systems suggests that the P681R mutation may be associated with increased viral pathogenicity in Bangladeshi patients due to enhanced electrostatic interactions between the mutant spike protein and the human ACE2 receptor, underscoring the importance of continuous genomic surveillance in the fight against COVID -19. Finally, the binding profile of the S_D614G-ACE2 and S_P681R-ACE2 complexes offer valuable insights to deeply understand the binding site characteristics that could help to develop antiviral therapeutics that inhibit protein-protein interactions between SARS-CoV-2 spike protein and human ACE2 receptor.


Asunto(s)
COVID-19 , Animales , Humanos , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mutación , Pangolines/metabolismo , Filogenia , Unión Proteica , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Virulencia
9.
Molecules ; 28(9)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37175076

RESUMEN

Among biological methods, green synthesis of the nanomaterials using plant extracts was shown to be an environmentally friendly, economical, and simple approach. In the current study, the biogenic synthesis of silver nanoparticles (AgNPs) was achieved using the leaf extract of Hibiscus tiliaceus, in order to prevent the contamination of the tissue culture media and induce callus growth. The nanostructures of the fabricated AgNPs were characterized using UV-visible spectroscopy, Fourier transform infra-red spectra (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), zeta size, and zeta potential techniques. Our results indicate that The UV-vis spectrum of AgNPs exhibited an absorption band at 415 nm. The FTIR analysis identified the functional groups which could involve in the reduction of silver ions to AgNPs, this was also confirmed by the (hkl) diffraction peaks in the XRD diffractogram. Moreover, the TEM analysis showed a spherical nanoparticle with a size ranging from 21 and 26 nm. Thereafter, the potential antibacterial and antifungal activity of the biogenic AgNPs was evaluated against Bacillus pumilus and Alternaria alternata which were isolated from the in vitro culture media and identified based on 16S rDNA and ITS rDNA sequences, respectively. The results showed that the AgNPs significantly inhibited the growth of Alternaria alternata and Bacillus pumilus at all applied concentrations (5, 10, 20 and 40 mg/L). Compared to the control more fungal radial growth reduction (42.59%,) and bacterial inhibition (98.12%) were registered in the plates containing high doses of AgNPs (40 mg/L). Using Rumex nervosus explants, the biosynthesized AgNPs were tested for their impact to promote callus growth. The obtained results showed a significant effect of AgNPs on callus fresh weight at all applied doses. Moreover, AgNPs treatments showed a polymorphism of 12.5% which was detected by RAPD markers. In summary, the results revealed that AgNPs (40 mg/L) can be effectively added to the in vitro culture media for reducing microbial contamination and improving callus growth while greatly maintaining its genetic stability.


Asunto(s)
Nanopartículas del Metal , Rumex , Nanopartículas del Metal/química , Plata/farmacología , Plata/química , Medios de Cultivo , Técnica del ADN Polimorfo Amplificado Aleatorio , Antibacterianos/farmacología , Difracción de Rayos X , Extractos Vegetales/química , Espectroscopía Infrarroja por Transformada de Fourier
10.
Plants (Basel) ; 12(8)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37111892

RESUMEN

Echinops macrochaetus is a medicinal plant that can be used to cure various diseases. In the present study, plant-mediated zinc oxide nanoparticles (ZnO-NPs) were synthesized using an aqueous leaf extract of the medicinal plant Heliotropium bacciferum and characterized using various techniques. E. macrochaetus was collected from the wild and identified using the internal transcribed spacer sequence of nrDNA (ITS-nrDNA), which showed the closeness to its related genus in a phylogenetic tree. The effect of synthesized biogenic ZnO-NPs was studied on E. macrochaetus in a growth chamber for growth, bioactive compound enhancement and antioxidant system response. The irrigation of plants at a low concentration of ZnO-NPs (T1 = 10 mg/L) induced more growth in terms of biomass, chlorophyll content (273.11 µg/g FW) and carotenoid content (135.61 µg/g FW) than the control and other treatments (T2-20 mg/L and T3-40 mg/L). However, the application of a high concentration of ZnO-NPs (20 and 40 mg/L) increased the level of antioxidant enzymes (SOD, APX and GR), total crude and soluble protein, proline and TBARS contents. The accumulations of the compounds quercetin-3-ß-D-glucoside, luteolin 7-rutinoside and p-coumaric acid were greater in the leaf compared to the shoot and root. A minor variation was observed in genome size in treated plants as compared to the control group. Overall, this study revealed the stimulatory effect of phytomediated ZnO-NPs, which act as bio-stimulants/nano-fertilizers as revealed by more biomass and the higher production of phytochemical compounds in different parts of the E. macrochaetus.

11.
Behav Sci (Basel) ; 13(3)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36975234

RESUMEN

In developing countries, it is generally believed that a good health status and education (human capital) bring economic well-being and benefits. Some researchers have found that there are overall financial returns and income premiums correlated with human capital because of its excellent and higher ability. Due to different views and a lack of consensus, the role of human capital is still ambiguous and poorly understood. This study investigates the economic returns of health status, education level, and social interaction, that is, whether and how human capital and social interaction affect employment and income premiums. Using the Chinese General Social Survey (CGSS) for specification bias, we used the instrumental variable (IV) approach to specify the endogeneity and interaction effect in order to identify the impact and economic returns of human capital and social interaction on the values of other control and observed variables. However, we show that an individual with strong and higher human capital positively affects economic returns, but the variability of these estimates differs across estimators. Being more socially interactive is regarded as a type of social interaction but as not human capital in the labor market; thus, the empirical findings of this study reflect social stability and that the economic well-being of socially active individuals is an advantaged situation. Furthermore, men with substantial human capital and social interaction are in a more advantaged position compared to women with similar abilities.

12.
Artículo en Inglés | MEDLINE | ID: mdl-36901613

RESUMEN

The discussion about whether research and development and advanced energy structure can efficiently control pollution has gained the consideration of researchers across the globe. However, there is a lack of enough empirical and theoretical evidence to support this phenomenon. To offer support of empirical evidence along with theoretical mechanism, we examine the net Impact of research and development (R&D) and renewable energy consumption (RENG) on CO2E utilizing panel data from G-7 economies for 1990-2020. Moreover, this study investigates the controlling role of economic growth and nonrenewable energy consumption (NRENG) in the R&D-CO2E models. The results obtained from the CS-ARDL panel approach verified a long-run and short-run relationship between R&D, RENG, economic growth, NRENG, and CO2E. Short- and long-run empirical results suggest that R&D and RENG improve environmental stability by decreasing CO2E, while economic growth and NRENG increase CO2E. Particularly, long-run R&D and RENG reduce CO2E with the effect of -0.091 and -0.101, respectively, while in the short run, they reduce CO2E with the effect of -0.084 and -0.094, respectively. Likewise, the 0.650% (long run) and 0.700% (short-run) increase in CO2E is due to economic growth, while the 0.138% (long run) and 0.136% (short run) upsurge in CO2E is due to an increase in NRENG. The findings obtained from the CS-ARDL model were also verified by the AMG model, while D-H non-causality approach was applied to check the pair-wise relationship among variables. The D-H causal relationship revealed that policies to focus on R&D, economic growth, and NRENG explain variation in CO2E but not vice versa. Furthermore, policies considering RENG and human capital can also affect CO2E and vice versa, meaning there is a round effect between the variables. All this indication may guide the concerned authorities to devise comprehensive policies that are helpful to environmental stability and in line with CO2E reduction.


Asunto(s)
Dióxido de Carbono , Energía Renovable , Humanos , Dióxido de Carbono/análisis , Desarrollo Económico , Contaminación Ambiental , Investigación , Carbono
13.
Anal Chim Acta ; 1245: 340847, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36737134

RESUMEN

Fluorescent carbon dots have been highly reported nanomaterials in recent times because of their excellent physio-chemical properties and various field of applications. Herein, a one-step hydrothermal approach was used to synthesize high biocompatible nitrogen and sulfur co-doped carbon dots, and examined their chemical sensing (Hg2+) and biological imaging properties. The N,S-CDs exhibited blue light, demonstrating a high quantum yield of up to 44.5% and excitation-independent fluorescent characteristics. Cytotoxicity was observed by CCK-8 assay using T-ca cells as a target source. Cell viability was recorded over 80% even after 7 days of treatment with a concentration up to 400 µg/mL, indicating low-toxicity of N,S-CDs. Notably, the bright blue fluorescence of N,S-CDs was quenched by introducing toxic Hg2+ ions into the solution. The detection limit was calculated to be about ∼3.5 nM, which is quite impressive compared to previous reports. Because of their low-toxicity, nano-size, and environment friendly properties, N,S-CDs could be excellent fluorescent agents for bio-imaging applications. The biological stability of fluorescent N,S-CDs was tested over time, and the findings were significant even after 8 days of incubation with T-ca cells. Because of good biocompatibility and bright fluorescence, N,S-CDs were suitable for in vivo imaging.


Asunto(s)
Mercurio , Puntos Cuánticos , Carbono/toxicidad , Carbono/química , Puntos Cuánticos/toxicidad , Puntos Cuánticos/química , Nitrógeno/química , Azufre/química , Colorantes Fluorescentes/toxicidad , Colorantes Fluorescentes/química , Mercurio/toxicidad
14.
Environ Sci Pollut Res Int ; 30(13): 37396-37414, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36567390

RESUMEN

Clean fuels and technology-based energy is an essential source to achieve sustainable economic growth and development. Therefore, the relationship between all types of poverty and other socioeconomic indicators has been studied extensively; nevertheless, clean fuels and technology-based energy poverty, adjusted for carbon emissions, has not been studied. The current study examines the impact of clean fuels and technology-based energy poverty on carbon emissions (Co2e). Using System-Generalized Method of Movement (SGMM) estimators, this study utilized panel data from eighteen developing countries in Asia from 2006 to 2017. The empirical findings obtained from econometric model suggest the presence of clean fuels and technology-based energy poverty and its curse on environment, i.e., energy poverty positively affects Co2e growth in Asian developing countries. Furthermore, economic growth (GDP), trade, and population are also positively associated with Co2e growth and negatively affect environmental quality. Based on the empirical findings of the current study, we recommend robust policy implications that the governments of targeted countries should invest more to increase clean fuels and technologies.


Asunto(s)
Carbono , Países en Desarrollo , Dióxido de Carbono , Pobreza , Tecnología , Desarrollo Económico , Energía Renovable
15.
Artículo en Inglés | MEDLINE | ID: mdl-36498124

RESUMEN

Health status and income level are both important factors in reducing poverty and accomplishing sustainable development in deep poverty areas of China. Therefore, the purpose of this study is to provide policy support for the sustainable poverty alleviation of farmers by analyzing the net effect of health risk on Farmers' income poverty and its impact mechanism. Based on the data of more than 199,000 farmers, this study uses the Difference in Difference (DID) model to empirically analyze the effect of health-risk on farmers' income poverty. The empirical findings obtained from DID model show that health risk has a significant and positive impact on income poverty, where the impact of disability is higher. Furthermore, the mechanism shows that the impact of health risks on income poverty is mainly influenced by farmers' off-farm working choices and time. The heterogeneity analysis shows that the health risk significantly impacts non-vulnerable farmers' poverty. With outdated healthcare facilities in poverty-stricken areas, people are more likely to fall into income poverty. Therefore, the study concludes that establishing an effective long-term mechanism of health risk prevention is essential to improving the endogenous development power of poor farmers and decreasing income poverty.


Asunto(s)
Agricultores , Áreas de Pobreza , Humanos , Renta , China , Agricultura
16.
Front Rehabil Sci ; 3: 1037649, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36504697

RESUMEN

A cross-sectional survey was undertaken to understand the management patterns and post-COVID-19 complications among hospital and home-treated participants. Retrospective information was collected from four COVID-19 dedicated hospitals and four selected community settings. Using probability proportional sampling, 925 participants were selected. Data were collected using a semi-structured questionnaire. Bivariate and multivariate logistic regression analysis and the exact chi-square tests were utilized to analyze the association between the studied variables. A total of 659 participants responded (response rate 70.93%); 375 from hospitals and 284 from communities. About 80% of participants were mild cases, 75% were treated at home, and 65% of hospital-treated participants were referred after home treatment. Participants treated at home-to hospital and directly in the hospital had 1.64 and 3.38 times longer recovery time respectively than what home-based participants had. A significant increasing trend (p < 0.001) of co-morbidities was found among referred and hospital treated participants. Age, level of education, physical exercise, practicing preventive measures, exposure to sunlight, and intake of carbohydrate, additional liquid, food supplements, and avoidance of junk foods were significantly associated with place of treatment. Post-COVID-19 difficulties of all factors were statistically significant for home treatment participants, whilst only depression (p = 0.026), chest pain (p = 0.017), and digestive disorders (p = 0.047) were significant (p < 0.05) for hospital treated participants. The outcomes from this study provide insight into a range of post-COVID-19 difficulties relating to at home and in hospital treatment participants. There are clear differences in the complications experienced, many of which are statistically significant. The health care professionals, the community people and COVID-19 survivors will be benefitted from the study findings, and the policy level people may use the information for designing health education program on post COVID-19 complications.

17.
Front Plant Sci ; 13: 962112, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36226285

RESUMEN

Bioactive compounds of medicinal plants present as natural ingredients provide health benefits beyond the basic nutritional value of these products. However, the availability of bioactive compounds in the current natural sources is limited. Hence, the induction of bioactive compound production from medicinal plants through nanoparticles (NPs) might play a vital role in industrially important medicinal compounds. Therefore, this study aimed to synthesize silver nanoparticles (AgNPs) biologically and to investigate their effect on phytochemical compound production from the callus of Juniperus procera. AgNPs were synthesized biologically using aqueous leaf extract of Phoenix dactylifera, which acted as a reducing and capping agent, and silver nitrate solution. The formation of AgNPs has been confirmed through different analytical techniques such as UV-Visible spectroscopy (UV), Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and scanning electron microscope (SEM). The impact of different concentrations (0.0, 5, 20, and 50 mg/L) of AgNPs on enzymatic and non-enzymatic antioxidants of the callus of J. procera was investigated. The obtained results showed a significant effect of AgNPs on biomass accumulation and non-enzymatic antioxidants (phenol, tannin, and flavonoid content). Additionally, total protein content and superoxide dismutase (SOD) activity were increased in response to AgNPs. Furthermore, bioactive compounds like gallic acid, tannic acid, coumarin, hesperidin, rutin, quercetin, and ferruginol were chromatographically separated and quantified using high-performance liquid chromatography (HPLC) with reference standards. These compounds were increased significantly in response to AgNPs treatments. We concluded that AgNPs could be a promising elicitor for improving the production of phytochemical compounds in medicinal plants. This work can serve asa good model for improving the production of bioactive compounds from medicinal plants in vitro. This molecular investigation should be done to understand better the metabolic mechanism leading to bioactive compound production scaling.

18.
Front Psychol ; 13: 967643, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36046401

RESUMEN

This research tends to convey the relationship between crude oil price volatility and key macroeconomics indicators, i.e., gross domestic product (GDP), inflation rate (IR), interest rate, and exchange rate. The study collected the time-series data (2000-2020) from the South Asian countries (Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan, and Sri Lanka), and employed macroeconomic policy modeling tools (impulse response function and the prediction error variance decomposition technique) in the vector autorepression (VAR) setup. The outcome of the impulse response function explained considerable variance among macroeconomic indicators in response to crude oil price shocks. The macroeconomic indicators are extremely susceptible to minor fluctuations in oil prices causing a significant impact on the region's socioeconomic situation. The result of variance decomposition indicates that each country in the region reacts differently to crude oil price volatility which reflects their macroeconomics fundamentals, independent policy, sector structure, and country differences. The findings support change in public policies in a way to reduce their dependency on oil energy and encourage them toward renewal and green energy sources for better environmental results and sustainable development.

19.
Materials (Basel) ; 15(14)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35888250

RESUMEN

Salinity is one of the major abiotic stresses that affect the plant's growth and development. Recently, the contribution of nanoparticles (NPs) to ameliorating salinity stresses has become the new field of interest for scientists due to their special physiochemical properties in the biological system. This study is designed to examine the effects of biosynthesized silver nanoparticles (AgNPs) spherical in shape (size range between 9 and 30 nm) on morphophysiological characteristics and the antioxidant defense system of in vitro raised Maerua oblongifolia under four levels of salt stress (0, 50, 100, and 200 mM NaCl). Our findings reveal that the application of AgNPs (0, 10, 20, and 30 mg/L) to M. oblongifolia shoots significantly alleviates the adverse effects of salt stress and ameliorates plant developmental-related parameters and defense systems. High salinity elevates the oxidative damage by over-accumulation of the levels of total soluble sugars, proline, hydrogen peroxide (H2O2), and malondialdehyde (MDA). In addition, enhancing the activity of the antioxidant enzymes, total phenolic, and flavonoid content over the control. Interestingly, the application of AgNPs to salinized plants improved the growth traits and photosynthetic pigment production and caused higher enhancement in antioxidant enzyme activities. Furthermore, mitigating the oxidative damage by lowering the accumulation of proline, soluble sugars, H2O2, MDA, and total phenolic and flavonoid contents in salt-stressed plants. In general, AgNPs augmented the growth of M. oblongifolia shoots under saline conditions through different strategies; thus, AgNPs can be used as an appropriate eco-friendly approach that enhances salinity tolerance in plants.

20.
Front Psychol ; 13: 870555, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35712136

RESUMEN

The study uses a transformative worldview to give voice to an economically marginalized group of tenant farmers vulnerable to climate changes due to their calamity prone geographical location. Drawing on anthropogenic global warming (AGW) theory lens, we examine the impact of manmade actions on climate change in District "Swat" and "Malakand" of Khyber Pakhtunkhwa (KPK) province, Pakistan using a sequential mixed methods research design. Through this research design, the results of quantitative survey were complemented with a qualitative analysis of in-depth interviews. In first phase, we conducted a survey of 200 tenant farmers, followed by second wave of data collection involving 12 open-ended in-depth interviews (IDIs). The both qualitative and quantitative results suggest that farmers in both districts are affected by climate change although their crop yield had progressively increased signaling better coping and survival skills than other parts of country. Majority of respondents believed that climate change is something beyond their control in disagreement with AGW theory. Major economic losses were specifically, due to sudden alterations in weather patterns, such as floods, and hailstorms that reduce productivity as well as results in food waste with no avenues available to reclaim the energy laden in organic food waste. Besides, a productivity loss was attributed to outdated farming, lack of awareness regarding sharecropping and crop loan insurance practices. The study concludes that farmers are most vulnerable to climate change in socioeconomic terms as such changes impact their income sources; This inwardly compels cash strapped tenant farmers to delve in practice of informal credit with substantive risks attached which further deteriorates their livelihoods. The study offers understanding of how low-literate and economically marginalized indigenous tenant farmers cope to climate change and offers policy recommendations to advocate for the rights to earn sustainable livelihoods in the face of grand climate challenge.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...