Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phytomedicine ; 132: 155588, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38908194

RESUMEN

BACKGROUND: Illness resulting from influenza is a global health problem that has significant adverse socioeconomic impact. Although various strategies such as flu vaccination have beneficial effects, the risk of this illness has not been eliminated. The use of botanicals may provide a complementary approach by enhancement of the host antiviral immune response. PURPOSE: Generate preclinical data using rodent models to determine the most effective utility of a Limnospira (formerly Arthrospira)-derived oral supplement (Immulina®) for enhancing host immunity to improve antiviral resilience. STUDY DESIGN: Two non-lethal mouse models (prophylactic and therapeutic) were used to evaluate the impact of Immulina® on increasing host resilience against experimental influenza infection. METHODS: Mice were fed Immulina® only for the 2 weeks prior to viral infection (prophylactic regime) or starting 3 days post-viral infection (at the onset of symptoms, therapeutic design). Three doses of Immulina® were evaluated in each model using both female and male mice. RESULTS: Significant protective effect of Immulina® against viral illness was observed in the prophylactic model (improved clinical scores, less body weight loss, decreased lung/body weight ratio, lower lung viral load, and increased lung IFN-γ and IL-6). Substantially less (minimal) protective effect was observed in the therapeutic model. CONCLUSION: This study demonstrates that Immulina® exerts a protective effect against influenza illness when administered using a prophylactic regime and may not be effective if given after the onset of symptoms. The results will help to optimally design future clinical trials.


Asunto(s)
Modelos Animales de Enfermedad , Infecciones por Orthomyxoviridae , Animales , Femenino , Masculino , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/inmunología , Ratones , Pulmón/efectos de los fármacos , Interferón gamma/metabolismo , Ratones Endogámicos BALB C , Interleucina-6/metabolismo , Antivirales/farmacología , Suplementos Dietéticos
2.
Planta Med ; 90(7-08): 631-640, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38843801

RESUMEN

Many polyprenylated acylphloroglucinols with fascinating chemical structures and intriguing biological activities have been identified as key to phytochemicals isolated from Garcinia, Hypericum, and related genera. In the present work, two chiral, tautomeric, highly-oxygenated polyprenylated acylphloroglucinols tethered with acyl and prenyl moieties on a bicyclo[3.3.1]nonanetrione core were isolated from the 95% ethanolic extract of Garcinia gummi-gutta fruit. The structures of both compounds were elucidated based on the NMR and MS data with ambiguity in the exact position of the enol and keto functions at C-1 and C-3 of the core structure. The structures of both polyprenylated acylphloroglucinols were established as a structurally revised guttiferone J and the new iso-guttiferone J with the aid of gauge-independent atomic orbital NMR calculations, CP3 probability analyses, specific rotation calculations, and electronic circular dichroism calculations in combination with the experimental data. The structures of both compounds resemble hyperforin, a potent activator of the human pregnane X receptor. As expected, both compounds showed strong pregnane X receptor activation at 10 µM [7.1-fold (guttiferone J) and 5.0-fold (iso-guttiferone J)], explained by a molecular docking study, necessitating further in-depth investigation to substantiate the herb-drug interaction potential of G. gummi-gutta upon co-administration with pharmaceutical drugs.


Asunto(s)
Garcinia , Espectroscopía de Resonancia Magnética , Garcinia/química , Estructura Molecular , Frutas/química , Benzofenonas/química , Benzofenonas/aislamiento & purificación , Benzofenonas/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Fitoquímicos/aislamiento & purificación , Fitoquímicos/química , Fitoquímicos/farmacología , Floroglucinol/química , Floroglucinol/aislamiento & purificación , Humanos
3.
Fitoterapia ; 177: 106106, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38945492

RESUMEN

The Cichorium plants are particularly notable due to their remarkable therapeutic and medicinal properties, besides being used as food and conventional medication. Although Cichorium plants have been studied for their phytoconstituents and biological activities, there is limited knowledge about the constituents of the roots of C. bottae. A phytochemical study of the 90% MeOH extract of C. bottae roots resulted in the isolation of twelve compounds belonging to guaianolide sesquiterpene lactones, sesquiterpene lactone glucosides, and phenolic derivatives, of which two compounds designated as 9α-hydroxycrepediaside B (1) and cichobotinal (2) were previously undescribed. The isolated compounds were assessed for their anti-inflammatory potential through the inhibition of inducible nitric oxide synthase (iNOS) and resultant decrease in nitric oxide generation in LPS-induced macrophages. Among the isolates, compounds 2 and 11 (8-deoxylactucin) inhibited iNOS activity with IC50 values of 21.0 ± 4 and 6.8 ± 0.1 µM, respectively. The methanolic extract of C. bottae inhibited iNOS with an IC50 of 10.5 ± 0.5 µg/mL.


Asunto(s)
Antiinflamatorios , Macrófagos , Óxido Nítrico Sintasa de Tipo II , Óxido Nítrico , Fitoquímicos , Extractos Vegetales , Raíces de Plantas , Antiinflamatorios/farmacología , Antiinflamatorios/aislamiento & purificación , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Raíces de Plantas/química , Células RAW 264.7 , Ratones , Animales , Estructura Molecular , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico/metabolismo , Macrófagos/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Lactonas/farmacología , Lactonas/aislamiento & purificación , Sesquiterpenos/farmacología , Sesquiterpenos/aislamiento & purificación , Fenoles/farmacología , Fenoles/aislamiento & purificación , Glucósidos/farmacología , Glucósidos/aislamiento & purificación , Sesquiterpenos de Guayano/farmacología , Sesquiterpenos de Guayano/aislamiento & purificación
4.
Phytomedicine ; 132: 155778, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38876006

RESUMEN

BACKGROUND: Immulina®, a dietary supplement derived from Limnospira (formerly Arthrospira), is being investigated as a potential agent to increase antiviral resilience. In our recently published manuscript, we described the effects of Immulina® on influenza when taken daily, beginning before infection (prophylaxis) or after the onset of clinical symptoms of viral illness (therapeutic). However, the benefit of Immulina® in infected individuals before the manifestation of any symptoms (prodromal) has not been investigated yet. PURPOSE: To evaluate Immulina®'s potential use to increase the host antiviral immune response using a prodromal therapy regime. STUDY DESIGN: The efficacy of Immulina® extract was evaluated in rodents using a prodromal protocol (test material administered prior to the emergence of viral illness symptoms). METHODS: Immulina® (25, 50 and 100 mg/kg body weight) was orally administered to both genders of mice, 2 h following influenza A viral infection, and continued daily for 14 days. RESULTS: Compared to the infected control mice, animals fed Immulina® exhibited statistically significant reduction in the emergence of various physical symptoms of viral-induced illness and decreased viral RNA levels. The effects are likely mediated through the host immune system since the level of various cytokines (IL-6 and IFN-γ) were significantly increased in lung tissue. CONCLUSION: This study, together with our previous paper, indicate that Immulina® was most effective at enhancing immune antiviral resilience if administered before or soon after initial infection. The data generated can be used to guide additional research using human subjects.


Asunto(s)
Infecciones por Orthomyxoviridae , Animales , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/prevención & control , Femenino , Masculino , Ratones , Antivirales/farmacología , Interferón gamma , Ratones Endogámicos BALB C , Suplementos Dietéticos , Pulmón/efectos de los fármacos , Pulmón/virología , Virus de la Influenza A/efectos de los fármacos , Cianobacterias/química , Síntomas Prodrómicos
5.
J Biomol Struct Dyn ; 42(2): 903-917, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37059719

RESUMEN

Pregnane X receptor (PXR), extensively expressed in human tissues related to digestion and metabolism, is responsible for recognizing and detoxifying diverse xenobiotics encountered by humans. To comprehend the promiscuous nature of PXR and its ability to bind a variety of ligands, computational approaches, viz., quantitative structure-activity relationship (QSAR) models, aid in the rapid dereplication of potential toxicological agents and mitigate the number of animals used to establish a meaningful regulatory decision. Recent advancements in machine learning techniques accommodating larger datasets are expected to aid in developing effective predictive models for complex mixtures (viz., dietary supplements) before undertaking in-depth experiments. Five hundred structurally diverse PXR ligands were used to develop traditional two-dimensional (2D) QSAR, machine-learning-based 2D-QSAR, field-based three-dimensional (3D) QSAR, and machine-learning-based 3D-QSAR models to establish the utility of predictive machine learning methods. Additionally, the applicability domain of the agonists was established to ensure the generation of robust QSAR models. A prediction set of dietary PXR agonists was used to externally-validate generated QSAR models. QSAR data analysis revealed that machine-learning 3D-QSAR techniques were more accurate in predicting the activity of external terpenes with an external validation squared correlation coefficient (R2) of 0.70 versus an R2 of 0.52 in machine-learning 2D-QSAR. Additionally, a visual summary of the binding pocket of PXR was assembled from the field 3D-QSAR models. By developing multiple QSAR models in this study, a robust groundwork for assessing PXR agonism from various chemical backbones has been established in anticipation of the identification of potential causative agents in complex mixtures.


Asunto(s)
Relación Estructura-Actividad Cuantitativa , Receptores de Esteroides , Humanos , Receptor X de Pregnano , Receptores de Esteroides/química , Aprendizaje Automático , Mezclas Complejas
6.
J Agric Food Chem ; 71(47): 18395-18404, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37972244

RESUMEN

Capsiate is a key ingredient in the fruits of a nonpungent cultivar of Capsicum annuum. We investigated the effects of a C. annuum extract (CE) and a capsiate-rich fraction of CE (CR) on nuclear receptors involved in multiple signaling pathways, glucose uptake, and adipogenesis in comparison to pure capsiate (Ca). Similar to the effect of Ca (100 µM), CE (500 µg/mL) and CR (100 µg/mL) caused the activation of PPARα and PPARγ (>3-fold), while CR also activated LXR and NRF2 (>2 fold). CR (200 µg/mL) and Ca (100 µM) decreased lipid accumulation (22.6 ± 14.1 and 49.7 ± 7.3%, respectively) in adipocytes and increased glucose uptake (44.7 ± 6.2 and 30.1 ± 12.2%, respectively) in muscle cells and inhibited the adipogenic effect induced by rosiglitazone by 41.2 ± 5.6 and 13.9 ± 4.3%, respectively. This is the first report to reveal the agonistic action of CR and Ca on multiple nuclear receptors along with their enhanced glucose uptake and antiadipogenic effects. The results indicate the potential utility of the capsiate-rich fraction of C. annuum in alleviating the symptoms of metabolic syndrome and in preventing the undesired adipogenic effects of full PPARγ agonists such as rosiglitazone.


Asunto(s)
Capsicum , Ratones , Animales , Rosiglitazona/farmacología , Capsicum/metabolismo , Adipogénesis , PPAR gamma/genética , PPAR gamma/metabolismo , Glucosa/metabolismo , Transducción de Señal , Células 3T3-L1
7.
J Med Food ; 26(5): 307-318, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37186895

RESUMEN

The berries of Juniperus communis have been traditionally used for therapeutic purposes. They have been reported to possess various pharmacological effects such as anti-inflammatory, hypoglycemic and hypolipidemic activities. In this study, a methanolic extract of J. communis berries (JB) was evaluated for its effects on peroxisome proliferator-activated receptors alpha and gamma (PPARα and PPARγ), liver X receptor (LXR), glucose uptake and lipid accumulation using various cellular systems. At a concentration of 25 µg/mL, JB caused 3.77-fold activation of PPARα, 10.90-fold activation of PPARγ, and 4.43-fold activation of LXR in hepatic cells. JB inhibited (11%) the adipogenic effect induced by rosiglitazone in adipocytes and increased glucose uptake (90%) in muscle cells. In high-fat diet (HFD) fed mice, JB at a dose of 25 mg/kg body weight exhibited a 21% decrease in body weight. Fasting glucose levels in mice treated with 12.5 mg/kg of JB were significantly decreased (39%) indicating its efficacy in regulating hyperglycemia and obesity induced by HFD thus ameliorating the symptoms of type 2 diabetes. A series of energy metabolic genes, including Sirt1 (2.00-fold) and RAF1 (2.04-fold), were upregulated by JB, while rosiglitazone regulated the hepatic PPARγ only. Phytochemical analysis of JB indicated presence of a number of flavonoids and biflavonoids which seem to be responsible for the observed activity. It was concluded that JB acted as a multiple agonist of PPARα, PPARγ and LXR without the undesired effect of adipogenesis and exhibited the property of enhancing glucose uptake. The regulation of PPARα, PPARγ and LXR seems to be through Sirt1 and RAF1. In vivo results confirmed the antidiabetic and antiobesity potential of JB and indicated its utility in metabolic disorder and type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Juniperus , Animales , Ratones , Peso Corporal , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Frutas/metabolismo , Glucosa/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Juniperus/metabolismo , Receptores X del Hígado/genética , Receptores X del Hígado/uso terapéutico , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico , Obesidad/genética , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Rosiglitazona/uso terapéutico , Sirtuina 1
8.
Molecules ; 28(10)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37241903

RESUMEN

Machaeriols and machaeridiols are unique hexahydrodibenzopyran-type aralkyl phytocannabinoids isolated from Machaerium Pers. Earlier studies of machaeriol A (1) and B (2) did not show any affinity for cannabinoid receptor 1 (CB1 or CNR1), although they are structural analogs of psychoactive hexahydrocannabinol. This study comprehensively reports on the affinities of isolated Machaerium Pers. compounds, namely machaeriol A-D (1-4) and machaeridiol A-C (5-7), against cannabinoid (CB1 and CB2) and opioid (κ, δ and µ) receptors. Among the isolated compounds, machaeriol D (4) and machaeridiol A-C (5-7) showed some selective binding affinity for the CB2 receptor, using a radioligand binding assay, with Ki values of >1.3, >1.77, >2.18 and >1.1 µM, respectively. On the other hand, none of the compounds showed any binding to the CB1 receptor. Due to recent reports on the anticancer potential of the endocannabinoid system, compounds 1-7 were tested against a battery of luciferase reporter gene vectors that assess the activity of many cancer-related signaling pathways, including Stat3, Smad2/3, AP-1, NF-κB, E2F, Myc, Ets, Notch, FoxO, Wnt, Hedgehog and pTK in HeLa and T98G glioblastoma cells. Complete dose-response curves have been determined for each compound in both of these cell lines, which revealed that machaeridiol 6 displayed activities (IC50 in µM in HeLa and T98G cells) towards Stat3 (4.7, 1.4), Smad2/3 (1.2, 3.0), AP-1 (5.9, 4.2), NF-κB (0.5, 4.0), E2F (5.7, 0.7), Myc (5.3, 2.0), ETS (inactive, 5.9), Notch (5.3, 4.6), Wnt (4.2, inactive) and Hedgehog (inactive, 5.0). Furthermore, a combination study between machaeriol C (3) and machaeridiol B (6) displayed additive effects for E2F, ETS, Wnt and Hedgehog pathways, where these compounds individually were either minimally active or inactive. None of the compounds inhibited luciferase expression driven by the minimal thymidine kinase promoter (pTK), indicating the lack of general cytotoxicity for luciferase enzyme inhibition at the 50 µM concentration in both of these cell lines. The significance of the inhibition of these signaling pathways via machaeridiol 5-7 and their cross-talk potential has been discussed.


Asunto(s)
Cannabinoides , Fabaceae , Neoplasias , Humanos , Cannabinoides/farmacología , Receptores Opioides , Fabaceae/química , FN-kappa B/metabolismo , Factor de Transcripción AP-1/metabolismo , Proteínas Hedgehog , Transducción de Señal , Neoplasias/tratamiento farmacológico , Receptor Cannabinoide CB2 , Receptor Cannabinoide CB1
9.
J Agric Food Chem ; 71(19): 7521-7534, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37134183

RESUMEN

Ginger is currently one of the most popular herbs commonly added to diverse foods, beverages, and dietary supplements. We evaluated the ability of a well-characterized ginger extract, and several of its phytoconstituents, to activate select nuclear receptors as well as modulate the activity of various cytochrome P450s and ATP-binding cassette (ABC) transporters because phytochemical-mediated modulation of these proteins underlies many clinically relevant herb-drug interactions (HDI). Our results revealed ginger extract activated the aryl hydrocarbon receptor (AhR) in AhR-reporter cells and pregnane X receptor (PXR) in intestinal and hepatic cells. Among the phytochemicals investigated, (S)-6-gingerol, dehydro-6-gingerdione, and (6S,8S)-6-gingerdiol activated AhR, while 6-shogaol, 6-paradol, and dehydro-6-gingerdione activated PXR. Enzyme assays showed that ginger extract and its phytochemicals dramatically inhibited the catalytic activity of CYP3A4, 2C9, 1A2, and 2B6, and efflux transport capabilities of P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP). Dissolution studies with ginger extract conducted in biorelevant simulated intestinal fluid yielded (S)-6-gingerol and 6-shogaol concentrations that could conceivably exceed cytochrome P450 (CYP) IC50 values when consumed in recommended doses. In summary, overconsumption of ginger may disturb the normal homeostasis of CYPs and ABC transporters, which in turn, may elevate the risk for HDIs when consumed concomitantly with conventional medications.


Asunto(s)
Interacciones de Hierba-Droga , Zingiber officinale , Zingiber officinale/química , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Proteínas de Neoplasias , Transportadoras de Casetes de Unión a ATP
10.
Chem Res Toxicol ; 36(6): 818-821, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37255213

RESUMEN

The French Lentil & Leek Crumbles frozen food product was recently recalled due to reports of gastrointestinal issues. So far, 393 adverse illness complaints and 133 hospitalizations have been reported from consumption of this food, and the tara (Tara spinosa) protein flour ingredient is hypothesized to be responsible. A multipronged approach resulted in identification of (S)-(-)-baikiain in tara as a compound of interest due to its abundance, possible metabolic fate, and close resemblance to irreversible inhibitors of L-pipecolate oxidase. Oral administration of baikiain in ND4 mice showed a statistically significant increase in blood ALT levels and a reduction in liver GSH.


Asunto(s)
Lens (Planta) , Animales , Ratones , Harina , Cebollas , Alimentos Congelados , Hígado
11.
Chem Res Toxicol ; 36(5): 747-756, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37042673

RESUMEN

Structurally similar phytochemical compounds may elicit markedly different skin sensitization responses. Eugenol and isoeugenol are natural phenylpropanoids found in various essential oils are frequently used as fragrance ingredients in consumer products due to their pleasing aromatic properties. Both compounds are also skin sensitizers with isoeugenol being a stronger sensitizer than eugenol. The most commonly accepted mechanisms for haptenation by eugenol involve formation of a quinone methide or an ortho-quinone intermediate. The mechanism for the increased skin response to isoeugenol remains elusive, although quinone methide intermediates have been proposed. The recent identification of diastereomeric 7,4'-oxyneolignans as electrophilic, thiol-depleting isoeugenol derivatives has revived interest in the possible role of elusive reactive intermediates associated with the isoeugenol's haptenation process. In the present work, integrated non-animal skin sensitization methods were performed to determine the ability of syn-7,4'-oxyneolignan to promote haptenation and activation of further molecular pathways in keratinocytes and dendritic cells, confirming it as a candidate skin sensitizer. Kinetic NMR spectroscopic studies using dansyl cysteamine (DCYA) confirmed the first ordered nature of the nucleophilic addition for the syn-7,4'-oxyneolignan. Computational studies reaffirmed the "syn" stereochemistry of the isolated 7,4'-oxyneolignans along with that of their corresponding DCYA adducts and provided evidence for the preferential stereoselectivity. A plausible rationale for isoeugenol's strong skin sensitization is proposed based on the formation of a hydroxy quinone methide as a reactive intermediate rather than the previously assumed quinone methide.


Asunto(s)
Eugenol , Indolquinonas , Piel/metabolismo
12.
RSC Med Chem ; 14(1): 122-134, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36760749

RESUMEN

We have previously shown that prenyl and aliphatic triazoles are interesting motifs to prepare new chemical entities for antiparasitic and antituberculosis drug development. In this opportunity a new series of prenyl-1,2,3-triazoles were prepared from isoprenyl azides and different alkynes looking for new antimalarial drug candidates. The compounds were prepared by copper(i) catalyzed dipolar cycloaddition of the isoprenyl azide equilibrium mixture providing exclusively 1,4-disubstituted 1,2,3-triazoles in a regiospecific fashion. The complete collection of 64 compounds was tested on chloroquine-sensitive (CQ sensitive), Sierra Leone (D6), and the chloroquine-resistant, Indochina (W2), strains of Plasmodium falciparum and those compounds which were not previously reported were also tested against Leishmania donovani, the causative agent for visceral leishmaniasis. Thirteen analogs displayed antimalarial activity with IC50 below 10 µM, while the antileishmanial activity of the newly reported analogs could not improve upon those previously reported. Compounds 1o and 1r were identified as the most promising antimalarial drug leads with IC50 below 3.0 µM for both CQ-sensitive and resistant P. falciparum strains with high selectivity index. Finally, a chemoinformatic in silico analysis was performed to evaluate physicochemical parameters, cytotoxicity risk and drug score. The validation of a bifunctional farnesyl/geranylgeranyl diphosphate synthase PfFPPS/GGPPS as the potential target of the antimalarial activity of selected analogs should be further investigated.

13.
Molecules ; 28(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36677813

RESUMEN

The application of essential oils has historically been limited to topical (massage therapy) and inhalational (aromatherapy) routes of administration. More recently, however, evaluation of the therapeutic effects of essential oils has expanded to include the oral route of administration, which increases the herb-drug interaction potential. The purpose of this study was to evaluate the herb-drug interaction potential of lavender essential oil and two of its primary phytoactive constituents, namely linalool and linalyl acetate. The metabolic stability of linalool and linalyl acetate was determined in human liver microsomes (HLM) and S9 fractions by quantitative analysis using UPLC-MS/MS system. Linalool was metabolically unstable in HLM and S9 fractions with an intrinsic clearance of 31.28 mL·min-1·kg-1, and 7.64 mL·min-1·kg-1, respectively. Interestingly, it was observed that linalyl acetate converted to linalool both in HLM and S9 fractions. Lavender oil showed weak inhibitory effect on the catalytic activity of CYP3A4 and CYP1A2 enzymes (IC50 12.0 and 21.5 µg/mL). Linalyl acetate inhibited CYP3A4 (IC50 4.75 µg/mL) while linalool did not show any inhibitory effect on any of the enzymes. The lavender oil and its constituents did not activate PXR to a considerable extent, and no activation of AhR was observed, suggesting a lack of potential to modify the pharmacokinetic and pharmacodynamic properties of conventional medications if used concurrently.


Asunto(s)
Lavandula , Aceites Volátiles , Humanos , Cromatografía Liquida , Citocromo P-450 CYP3A , Espectrometría de Masas en Tándem , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología
14.
J Diet Suppl ; 20(4): 582-601, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35302913

RESUMEN

The dried roots and rhizomes of Glycyrrhiza species (G. glabra, G. uralensis and G. inflata), commonly known as licorice, have long been used in traditional medicine. In addition, two other species, G. echinata and G. lepidota are also considered "licorice" in select markets. Currently, licorice is an integral part of several botanical drugs and dietary supplements. To probe the botanicals' safety, herb-drug interaction potential of the hydroethanolic extracts of five Glycyrrhiza species and their key constituents was investigated by determining their effects on pregnane X receptor, aryl hydrocarbon receptor, two major cytochrome P450 isoforms (CYP3A4 and CYP1A2), and the metabolic clearance of antiviral drugs. All extracts enhanced transcriptional activity of PXR and AhR (>2-fold) and increased the enzyme activity of CYP3A4 and CYP1A2. The highest increase in CYP3A4 was seen with G. echinata (4-fold), and the highest increase in CYP1A2 was seen with G. uralensis (18-fold) and G. inflata (16-fold). Among the constituents, glabridin, licoisoflavone A, glyasperin C, and glycycoumarin activated PXR and AhR, glabridin being the most effective (6- and 27-fold increase, respectively). Licoisoflavone A, glyasperin C, and glycycoumarin increased CYP3A4 activity while glabridin, glyasperin C, glycycoumarin, and formononetin increased CYP1A2 activity (>2-fold). The metabolism of antiretroviral drugs (rilpivirine and dolutegravir) was increased by G. uralensis (2.0 and 2.5-fold) and its marker compound glycycoumarin (2.3 and 1.6-fold). The metabolism of dolutegravir was also increased by G. glabra (2.8-fold) but not by its marker compound, glabridin. These results suggest that licorice and its phytochemicals could affect the metabolism and clearance of certain drugs that are substrates of CYP3A4 and CYP1A2.Supplemental data for this article is available online at https://doi.org/10.1080/19390211.2022.2050875 .


Asunto(s)
Citocromo P-450 CYP1A2 , Glycyrrhiza , Citocromo P-450 CYP3A , Interacciones de Hierba-Droga , Glycyrrhiza/química , Extractos Vegetales/química , Fitoquímicos/farmacología
15.
Nat Prod Res ; 37(4): 542-550, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35491702

RESUMEN

Soft corals distributed across the Red Sea coasts are a rich source of diverse and bioactive natural products. Chemical probing of the Red Sea soft coral Litophyton arboreum led to isolation and structural characterization of an undescribed sesquiterpenoid, litoarbolide A (1), along with 14 previously reported metabolites (2-15). The chemical structures of the isolates were assigned based on NMR as well as high resolution electrospray ionization mass spectrometry (HR-ESI-MS) data. Litoarbolide A is supposed to be the biosynthetic precursor to other sesquiterpenoids, which formed via further post-translational modifications. Furthermore, these metabolites were evaluated for anti-malarial activity, where only the acyclic sesquiterpenoid of a sec-germacrane nucleus (7) showed an activity against chloroquine-sensitive (D6) and chloroquine-resistant (W2) strains of Plasmodium falciparum with IC50 at 3.7 and 2.2 mg/mL, respectively. Moreover, the isolated metabolites were all non-toxic to the Vero cell line. These findings support the consideration of L. arboreum in further natural anti-malarial studies.


Asunto(s)
Antozoos , Antimaláricos , Sesquiterpenos , Animales , Antimaláricos/farmacología , Antozoos/química , Océano Índico , Cloroquina/farmacología , Sesquiterpenos/farmacología , Plasmodium falciparum
16.
J Ethnopharmacol ; 301: 115822, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36223846

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The last three decades have witnessed a surge in popularity and consumption of herbal products. An unintended consequence of such popularity is that chronic consumption of these products can often modulate the functions of various proteins involved in drug disposition and may, in turn, impose risks for herb-drug interactions (HDIs), leading to serious adverse health outcomes. Identifying plants that may give rise to clinically relevant HDIs is essential, and proactive dissemination of such research outcomes is necessary for researchers, clinicians, and average consumers. AIM OF THE STUDY: The main objective of this study was to evaluate the HDI potential of plants commonly used as ingredients in many herbal products, including BDS. MATERIALS AND METHODS: The dried material of 123 plants selected from the NCNPR repository was extracted with 95% ethanol. The extracts were screened for agonistic effects on nuclear receptors (PXR and AhR) by reporter gene assays in PXR-transfected HepG2 and AhR-reporter cells. For cytochrome P450 enzyme (CYP) inhibition studies, CYP450 baculosomes were incubated with enzyme-specific probe substrates by varying concentrations of extracts. The inhibitory effect on the efflux transporter P-glycoprotein (P-gp) was investigated via rhodamine (Rh-123) uptake assay in P-gp overexpressing MDR1-MDCK cells. RESULTS: Out of 123 plants, 16 increased transcriptional activity of human PXR up to 4 to 7-fold at 60 µg/mL, while 18 plants were able to increase AhR activity up to 10 to 40-fold at 30 µg/mL. Thirteen plants inhibited the activity of CYP3A4, while 10 plants inhibited CYP1A2 activity with IC50 values in the range of 1.3-10 µg/mL. Eighteen plants (at 50 µg/mL) increased intracellular accumulation of Rh-123 (>150%) in MDR1-MDCK cells. Additionally, other plants tested in this study were able to activate PXR, AhR, or both to lesser extents, and several inhibited the catalytic activity of CYPs at higher concentrations (IC50 >10 µg/mL). CONCLUSIONS: The results indicate that prolonged or excessive consumption of herbal preparations rich in such plants (presented in Figs. 1a, 2a, 3a, 4a, and 5a) may pose a risk for CYP- and P-gp-mediated HDIs, leading to unwanted side effects due to the altered pharmacokinetics of concomitantly ingested medications.


Asunto(s)
Plantas Medicinales , Receptores de Esteroides , Humanos , Interacciones de Hierba-Droga , Plantas Medicinales/metabolismo , Receptor X de Pregnano , Receptores de Esteroides/genética , Extractos Vegetales/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Citocromo P-450 CYP3A/metabolismo , Receptores Citoplasmáticos y Nucleares
17.
J Diet Suppl ; 20(5): 763-776, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36017806

RESUMEN

In this study, hydroethanolic extracts of 30 top-selling botanicals (herbs) commonly used as ingredients of herbal dietary supplements in the US were screened for their potential to activate the human pregnane X receptor (hPXR) and human aryl hydrocarbon receptor (hAhR) and to increase the activities of hPXR- and hAhR-regulated drug metabolizing cytochrome P450 enzymes (i.e., CYP3A4 and CYP1A2, respectively). Of the 30 botanicals tested, 21 induced PXR and 29 induced AhR transcriptional activities. Out of the 21 botanicals that induced hPXR transcriptional activity, 14 yielded >50% induction in CYP3A4 activity at concentrations ranging from 6 to 60 µg/mL and 16 out of the 29 botanicals that activated hAhR yielded >50% induction in CYP1A2 activity at concentrations ranging from 3 to 30 µg/mL. Moreover, eight botanicals (G. gummi-gutta [garcinia], Hemp [low and high CBD content], H. perforatum [St. John's wort], M. vulgare [horehound], M. oleifera [moringa], O. vulgare [oregano], P. johimbe [yohimbe] and W. somnifera [ashwagandha]) yielded >50% induction in both CYP3A4 and CYP1A2 activity. Herbal products are mixtures of phytoconstituents, any of which could modulate drug metabolism. Our data reveals that several top-selling botanicals may pose herb-drug interaction (HDI) risks via CYP450 induction. While in vitro experiments can provide useful guidance in assessing a botanical's HDI potential, their clinical relevance needs to be investigated in vivo. Botanicals whose effects on hPXR/CYP3A4, and hAhR/CYP1A2 activity were most pronounced will be slated for further clinical investigation.


Asunto(s)
Citocromo P-450 CYP1A2 , Receptores de Esteroides , Humanos , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP3A/metabolismo , Receptores de Esteroides/metabolismo , Interacciones de Hierba-Droga , Receptores de Hidrocarburo de Aril/metabolismo
18.
ACS Omega ; 7(30): 26824-26843, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35936409

RESUMEN

The genus Glycyrrhiza, comprising approximately 36 spp., possesses complex structural diversity and is documented to possess a wide spectrum of biological activities. Understanding and finding the mechanisms of efficacy or safety for a plant-based therapy is very challenging, yet it is crucial and necessary to understand the polypharmacology of traditional medicines. Licorice extract was shown to modulate the xenobiotic receptors, which might manifest as a potential route for natural product-induced drug interactions. However, different mechanisms could be involved in this phenomenon. Since the induced herb-drug interaction of licorice supplements via Pregnane X receptor (PXR) is understudied, we ventured out to analyze the potential modulators of PXR in complex mixtures such as whole extracts by applying computational mining tools. A total of 518 structures from five species of Glycyrrhiza: 183 (G. glabra), 180 (G. uralensis), 100 (G. inflata), 33 (G. echinata), and 22 (G. lepidota) were collected and post-processed to yield 387 unique compounds. Visual inspection of top candidates with favorable ligand-PXR interactions and the highest docking scores were identified. The in vitro testing revealed that glabridin (GG-14) is the most potent PXR activator among the tested compounds, followed by licoisoflavone A, licoisoflavanone, and glycycoumarin. A 200 ns molecular dynamics study with glabridin confirmed the stability of the glabridin-PXR complex, highlighting the importance of computational methods for rapid dereplication of potential xenobiotic modulators in a complex mixture instead of undertaking time-consuming classical biological testing of all compounds in a given botanical.

19.
Drug Metab Pharmacokinet ; 45: 100463, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35709685

RESUMEN

Primaquine (PQ) is a racemic drug used in treatment of malaria for six decades. Recent studies suggest that the two enantiomers of PQ are differentially metabolized in animals, and this results in different pharmacological and toxicological profiles. The current study characterizes the pharmacokinetic (PK) properties, metabolism and tolerability of the individual enantiomers of PQ in healthy human volunteers with normal glucose-6-phosphate dehydrogenase (G6PD) activity. Two cohorts (at two dose levels), each with 18 subjects, participated in three study arms in a crossover fashion: a single dose of the (-)-R enantiomer (RPQ), a single dose of the (+)-S enantiomer (SPQ), and a single dose of racemic PQ (RSPQ). PQ and its key metabolites carboxyprimaquine (cPQ) and PQ-N-carbamoyl glucuronide (PQ-N-CG) were analyzed. Clear differences were observed in PK and metabolism of the two enantiomers. Relative PQ exposure was higher with SPQ as compared to RPQ. PQ maximum plasma concentration (Cmax) and area under the plasma concentration-time curve were higher for SPQ, while the apparent volume of distribution and total body clearance were higher for RPQ. Metabolism of the two enantiomers showed dramatic differences: plasma PQ-N-CG was derived solely from SPQ, while RPQ was much more efficiently converted to cPQ than was SPQ. Cmax of cPQ and PQ-N-CG were 10 and 2 times higher, respectively, than the parent drugs. The study demonstrates that the PK properties of PQ enantiomers show clear differences, and metabolism is highly enantioselective. Such differences in metabolism suggest potentially distinct toxicity profiles in multi-dose regimens, especially in G6PD-deficient subjects.


Asunto(s)
Antimaláricos , Primaquina , Animales , Antimaláricos/metabolismo , Antimaláricos/farmacología , Voluntarios Sanos , Humanos , Primaquina/metabolismo , Estereoisomerismo
20.
Med Chem ; 18(9): 949-969, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35240963

RESUMEN

BACKGROUND: Quinoline is a well-established nucleus displaying various biological activities. Quinolin-8-ol-containing compounds are reported for antimicrobial as well as antimalarial activity. Hydrazone- and pyrazole-containing compounds are also reported for antimicrobial activity. In this work, we have synthesized hydrazonomethyl-quinolin-8-ol and pyrazol-3-yl-quinolin-8-ol derivatives retaining quinolin-8-ol along with hydrazone/pyrazole pharmacophores. OBJECTIVE: The objective of this work was to synthesise and evaluate in vitro hydrazonomethylquinolin- 8-ol and pyrazol-3-yl-quinolin-8-ol derivatives for antifungal, antibacterial and antimalarial activity. METHODS: Designed and synthesized hydrazonomethyl-quinolin-8-ol and pyrazol-3-yl-quinolin-8- ol derivatives were evaluated for antifungal (against Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans), antibacterial (against methicillin resistant Staphylococcus aureus (MRSA), Escherichia Coli, Pseudomonas aeruginosa and Klebsillae pneumoniae) as well as antimalarial (against Plasmodium falciparum D6 and W2 strains) activity. RESULTS: Hydrazonomethyl-quinolin-8-ol (15.1-15.28) and pyrazol-3-yl-quinolin-8-ol derivatives (16.1-16.21 and 20.1-20.18) were synthesized in good to moderate yield. One-pot synthesis of pyrazol- 3-yl-quinolin-8-ol derivatives (16.1-16.21 and 20.1-20.18) was achieved. Compounds 15.3, 15.6, 15.7, 15.9-15.14, 15.16-15.19, 15.22 and 15.24 were found more potent compared to reference standard fluconazole (IC50 = 3.20 µM) against C. albicans with IC50 value less than 3 µM. Compounds 15.1, 15.2, 15.21 and 15.23 showed almost similar activity to reference standard fluconazole against C. albicans. Compounds 15.1-15.3, 15.9-15.12, 15.14-15.17, and 15.21-15.23 also showed good activity against fluconazole-resistant strain A. fumigatus with IC50 value less than 3 µM. Compounds 15.2-15.4, 15.7, 15.9, 15.17, 15.20 showed good antimalarial activity against P. falciparum D6 as well as P. falciparum W2 with IC50 values of 1.84, 1.83, 1.56, 1.49, 1.45, 1.97, 1.68 µM and 1.86, 1.40, 1.19, 1.71, 1.16, 1.34, 1.61 µM, respectively. 5-Pyrazol-3-yl-quinolin-8-ol derivatives, such as 16.3, 16.5, 16.11, 16.13, 16.19, 16.20, also showed antimalarial activity against P. falciparum D6 and W2 strains with IC50 values of 2.23, 2.16, 2.99, 2.99, 2.73, 2.12 µM and 2.91, 3.60, 4.61, 2.71, 2.31, 2.66 µM, respectively. CONCLUSION: Most of the 5-hydrazonomethyl-quinolin-8-ol derivatives showed good antifungal activity against C. albicans, A. fumigatus and C. neoformans. Most of the 5-hydrazonomethylquinolin- 8-ol derivatives were found more potent than reference standard fluconazole. These derivatives may be considered as leads for further development of antifungal agents.


Asunto(s)
Antiinfecciosos , Antimaláricos , Cryptococcus neoformans , Staphylococcus aureus Resistente a Meticilina , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Antifúngicos/farmacología , Antimaláricos/farmacología , Candida albicans , Escherichia coli , Fluconazol , Hidrazonas , Pruebas de Sensibilidad Microbiana , Pirazoles/farmacología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...