Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
mBio ; 14(1): e0345122, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36656038

RESUMEN

Flucytosine (5-FC) is an antifungal agent commonly used for treatment of cryptococcosis and several other systemic mycoses. In fungi, cytosine permease and cytosine deaminase are known major players in flucytosine resistance by regulating uptake and deamination of 5-FC, respectively. Cryptococcus species have three paralogs each of cytosine permease (FCY2, FCY3, and FCY4) and cytosine deaminase (FCY1, FCY5 and FCY6). As in other fungi, we found FCY1 and FCY2 to be the primary cytosine deaminase and permease gene, respectively, in C. neoformans H99 (VNI), C. gattii R265 (VGIIa) and WM276 (VGI). However, when various amino acids were used as the sole nitrogen source, C. neoformans and C. gattii diverged in the function of FCY3 and FCY6. Though there was some lineage-dependent variability, the two genes functioned as the secondary permease and deaminase, respectively, only in C. gattii when the nitrogen source was arginine, asparagine, or proline. Additionally, the expression of FCY genes, excluding FCY1, was under nitrogen catabolic repression in the presence of NH4. Functional analysis of GAT1 and CIR1 gene deletion constructs demonstrated that these two genes regulate the expression of each permease and deaminase genes individually. Furthermore, the expression levels of FCY3 and FCY6 under different amino acids corroborated the 5-FC susceptibility in fcy2Δ or fcy1Δ background. Thus, the mechanism of 5-FC resistance in C. gattii under diverse nitrogen conditions is orchestrated by two transcription factors of GATA family, cytosine permease and deaminase genes. IMPORTANCE 5-FC is a commonly used antifungal drug for treatment of cryptococcosis caused by Cryptococcus neoformans and C. gattii species complexes. When various amino acids were used as the sole nitrogen source for growth, we found lineage dependent differences in 5-FC susceptibility. Deletion of the classical cytosine permease (FCY2) and deaminase (FCY1) genes caused increased 5-FC resistance in all tested nitrogen sources in C. neoformans but not in C. gattii. Furthermore, we demonstrate that the two GATA family transcription factor genes GAT1 and CIR1 are involved in the nitrogen-source dependent 5-FC resistance by regulating the expression of the paralogs of cytosine permease and deaminase genes. Our study not only identifies the new function of paralogs of the cytosine permease and deaminase and the role of their regulatory transcription factors but also denotes the differences in the mechanism of 5-FC resistance among the two etiologic agents of cryptococcosis under different nitrogen sources.


Asunto(s)
Criptococosis , Cryptococcus gattii , Cryptococcus neoformans , Flucitosina/farmacología , Flucitosina/metabolismo , Nitrógeno/metabolismo , Citosina Desaminasa/metabolismo , Antifúngicos/farmacología , Antifúngicos/metabolismo , Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , Cryptococcus gattii/genética , Criptococosis/microbiología , Aminoácidos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Factores de Transcripción/metabolismo , Pruebas de Sensibilidad Microbiana
2.
mBio ; 10(4)2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31455652

RESUMEN

We found a novel role of Myo5, a type I myosin (myosin-I), and its fortuitous association with d-amino acid utilization in Cryptococcus gattii Myo5 colocalized with actin cortical patches and was required for endocytosis. Interestingly, the myo5Δ mutant accumulated high levels of d-proline and d-alanine which caused toxicity in C. gattii cells. The myo5Δ mutant also accumulated a large set of substrates, such as membrane-permeant as well as non-membrane-permeant dyes, l-proline, l-alanine, and flucytosine intracellularly. Furthermore, the efflux rate of fluorescein was significantly increased in the myo5Δ mutant. Importantly, the endocytic defect of the myo5Δ mutant did not affect the localization of the proline permease and flucytosine transporter. These data indicate that the substrate accumulation phenotype is not solely due to a defect in endocytosis, but the membrane properties may have been altered in the myo5Δ mutant. Consistent with this, the sterol staining pattern of the myo5Δ mutant was different from that of the wild type, and the mutant was hypersensitive to amphotericin B. It appears that the changes in sterol distribution may have caused altered membrane permeability in the myo5Δ mutant, allowing increased accumulation of substrate. Moreover, myosin-I mutants generated in several other yeast species displayed a similar substrate accumulation phenotype. Thus, fungal type I myosin appears to play an important role in regulating membrane permeability. Although the substrate accumulation phenotype was detected in strains with mutations in the genes involved in actin nucleation, the phenotype was not shared in all endocytic mutants, indicating a complicated relationship between substrate accumulation and endocytosis.IMPORTANCECryptococcus gattii, one of the etiological agents of cryptococcosis, can be distinguished from its sister species Cryptococcus neoformans by growth on d-amino acids. C. gattiiMYO5 affected the growth of C. gattii on d-amino acids. The myo5Δ cells accumulated high levels of various substrates from outside the cells, and excessively accumulated d-amino acids appeared to have caused toxicity in the myo5Δ cells. We provide evidence on the alteration of membrane properties in the myo5Δ mutants. Additionally, alteration in the myo5Δ membrane permeability causing higher substrate accumulation is associated with the changes in the sterol distribution. Furthermore, myosin-I in three other yeasts also manifested a similar role in substrate accumulation. Thus, while fungal myosin-I may function as a classical myosin-I, it has hitherto unknown additional roles in regulating membrane permeability. Since deletion of fungal myosin-I causes significantly elevated susceptibility to multiple antifungal drugs, it could serve as an effective target for augmentation of fungal therapy.


Asunto(s)
Aminoácidos/metabolismo , Antifúngicos/farmacología , Criptococosis/microbiología , Cryptococcus gattii/genética , Miosina Tipo I/metabolismo , Actinas/metabolismo , Anfotericina B/farmacología , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular , Cryptococcus gattii/metabolismo , Endocitosis , Flucitosina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Mutación , Miosina Tipo I/genética , Fenotipo
3.
mBio ; 9(6)2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30514783

RESUMEN

Heteroresistance to fluconazole (FLC) in Cryptococcus is a transient adaptive resistance which is lost upon release from the drug pressure. It is known that clones heteroresistant to FLC invariably contain disomic chromosomes, but how disomy is formed remains unclear. Previous reports suggested that the aneuploid heteroresistant colonies in Cryptococcus emerge from multinucleated cells, resembling the case in Candida albicans Although a small number of cells containing multiple nuclei appear in a short time after FLC treatment, we provide evidence that the heteroresistant colonies in the presence of FLC arise from uninucleate cells without involving multinuclear/multimeric stages. We found that fidelity of chromosome segregation in mitosis plays an important role in regulation of FLC heteroresistance frequency in C. neoformans Although FLC-resistant colonies occurred at a very low frequency, we were able to modulate the frequency of heteroresistance by overexpressing SMC1, which encodes a protein containing an SMC domain in chromosome segregation. Using time-lapse microscopy, we captured the entire process of colony formation from a single cell in the presence of FLC. All the multinucleated cells formed within a few hours of FLC exposure failed to multiply after a few cell divisions, and the cells able to proliferate to form colonies were all uninucleate without exception. Furthermore, no nuclear fusion event or asymmetric survival between mother and daughter cells, a hallmark of chromosome nondisjunction in haploid organisms, was observed. Therefore, the mechanisms of aneuploidy formation in C. neoformans appear different from most common categories of aneuploid formation known for yeasts.IMPORTANCE The gold standard of cryptococcosis treatment consists of induction therapy with amphotericin B followed by lifelong maintenance therapy with fluconazole (FLC). However, prolonged exposure to FLC induces the emergence of clones heteroresistant to azoles. All the heteroresistant clones thus far analyzed have been shown to be aneuploids, but how the aneuploid is formed remains unclear. Aneuploidy in fungi and other eukaryotic cells is known to result most commonly from chromosome missegregation during cell division due to defects in any one of the multiple components and processes that are required for the formation of two genetically identical daughter cells. Although formation of multinucleated cells has been observed in cells exposed to FLC, evidence for the emergence of drug-resistant aneuploid populations directly from such cells has been lacking. We show the evidence that the aneuploid in fluconazole-heteroresistant clones of Cryptococcus neoformans is derived neither from multinucleated cells nor from chromosome missegregation.


Asunto(s)
Aneuploidia , Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Cryptococcus neoformans/efectos de los fármacos , Cryptococcus neoformans/genética , Fluconazol/farmacología , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica , Cryptococcus neoformans/fisiología , Farmacorresistencia Fúngica/genética , Mitosis , Imagen de Lapso de Tiempo
4.
Artículo en Inglés | MEDLINE | ID: mdl-29378705

RESUMEN

Cryptococcus neoformans and Cryptococcus gattii species complexes are the etiologic agents of cryptococcosis. We have deciphered the roles of three ABC transporters, Afr1, Afr2, and Mdr1, in the representative strains of the two species, C. neoformans H99 and C. gattii R265. Deletion of AFR1 in H99 and R265 drastically reduced the levels of resistance to three xenobiotics and three triazoles, suggesting that Afr1 is the major drug efflux pump in both strains. Fluconazole susceptibility was not affected when AFR2 or MDR1 was deleted in both strains. However, when these genes were deleted in combination with AFR1, a minor additive effect in susceptibility toward several drugs was observed. Deletion of all three genes in both strains caused further increases in susceptibility toward fluconazole and itraconazole, suggesting that Afr2 and Mdr1 augment Afr1 function in pumping these triazoles. Intracellular accumulation of Nile Red significantly increased in afr1Δ mutants of both strains, but rhodamine 6G accumulation increased only in the mdr1Δ mutant of H99. Thus, the three efflux pumps play different roles in the two strains when exposed to different azoles and xenobiotics. AFR1 and AFR2 expression was upregulated in H99 and R265 when treated with fluconazole. However, MDR1 expression was upregulated only in R265 under the same conditions. We screened a library of transcription factor mutants and identified several mutants that manifested either altered fluconazole sensitivity or an increase in the frequency of fluconazole heteroresistance. Gene expression analysis suggests that the three efflux pumps are regulated independently by different transcription factors in response to fluconazole exposure.


Asunto(s)
Antifúngicos/farmacología , Cryptococcus gattii/efectos de los fármacos , Cryptococcus gattii/metabolismo , Cryptococcus neoformans/efectos de los fármacos , Cryptococcus neoformans/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Cryptococcus gattii/patogenicidad , Farmacorresistencia Fúngica/genética , Fluconazol/farmacología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Itraconazol/farmacología , Pruebas de Sensibilidad Microbiana , Triazoles/farmacología
5.
PLoS One ; 10(7): e0131865, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26132227

RESUMEN

The ability to grow on media containing certain D-amino acids as a sole nitrogen source is widely utilized to differentiate Cryptococcus gattii from C. neoformans. We used the C. neoformans H99 and C. gattii R265 strains to dissect the mechanisms of D-amino acids utilization. We identified three putative D-amino acid oxidase (DAO) genes in both strains and showed that each DAO gene plays different roles in D-amino acid utilization in each strain. Deletion of DAO2 retarded growth of R265 on eleven D-amino acids suggesting its prominent role on D-amino acid assimilation in R265. All three R265 DAO genes contributed to growth on D-Asn and D-Asp. DAO3 was required for growth and detoxification of D-Glu by both R265 and H99. Although growth of H99 on most D-amino acids was poor, deletion of DAO1 or DAO3 further exacerbated it on four D-amino acids. Overexpression of DAO2 or DAO3 enabled H99 to grow robustly on several D-amino acids suggesting that expression levels of the native DAO genes in H99 were insufficient for growth on D-amino acids. Replacing the H99 DAO2 gene with a single copy of the R265 DAO2 gene also enabled its utilization of several D-amino acids. Results of gene and promoter swaps of the DAO2 genes suggested that enzymatic activity of Dao2 in H99 might be lower compared to the R265 strain. A reduction in virulence was only observed when all DAO genes were deleted in R265 but not in H99 indicating a pathobiologically exclusive role of the DAO genes in R265. These results suggest that C. neoformans and C. gattii divergently evolved in D-amino acid utilization influenced by their major ecological niches.


Asunto(s)
Aminoácidos/metabolismo , Cryptococcus gattii/metabolismo , Cryptococcus neoformans/metabolismo , Nitrógeno/metabolismo , Animales , Criptococosis/microbiología , Cryptococcus gattii/patogenicidad , Cryptococcus neoformans/patogenicidad , D-Aminoácido Oxidasa/genética , D-Aminoácido Oxidasa/metabolismo , Ratones , Regiones Promotoras Genéticas , Virulencia
6.
PLoS Genet ; 10(4): e1004292, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24762475

RESUMEN

Cryptococcus neoformans encounters a low oxygen environment when it enters the human host. Here, we show that the conserved Ras1 (a small GTPase) and Cdc24 (the guanine nucleotide exchange factor for Cdc42) play an essential role in cryptococcal growth in hypoxia. Suppressor studies indicate that PTP3 functions epistatically downstream of both RAS1 and CDC24 in regulating hypoxic growth. Ptp3 shares sequence similarity to the family of phosphotyrosine-specific protein phosphatases and the ptp3Δ strain failed to grow in 1% O2. We demonstrate that RAS1, CDC24 and PTP3 function in parallel to regulate thermal tolerance but RAS1 and CDC24 function linearly in regulating hypoxic growth while CDC24 and PTP3 reside in compensatory pathways. The ras1Δ and cdc24Δ strains ceased to grow at 1% O2 and became enlarged but viable single cells. Actin polarization in these cells, however, was normal for up to eight hours after transferring to hypoxic conditions. Double deletions of the genes encoding Rho GTPase Cdc42 and Cdc420, but not of the genes encoding Rac1 and Rac2, caused a slight growth retardation in hypoxia. Furthermore, growth in hypoxia was not affected by the deletion of several central genes functioning in the pathways of cAMP, Hog1, or the two-component like phosphorylation system that are critical in the cryptococcal response to osmotic and genotoxic stresses. Interestingly, although deletion of HOG1 rescued the hypoxic growth defect of ras1Δ, cdc24Δ, and ptp3Δ, Hog1 was not hyperphosphorylated in these three mutants in hypoxic conditions. RNA sequencing analysis indicated that RAS1, CDC24 and PTP3 acted upon the expression of genes involved in ergosterol biosynthesis, chromosome organization, RNA processing and protein translation. Moreover, growth of the wild-type strain under low oxygen conditions was affected by sub-inhibitory concentrations of the compounds that inhibit these biological processes, demonstrating the importance of these biological processes in the cryptococcal hypoxia response.


Asunto(s)
Proteínas de Ciclo Celular/genética , Cryptococcus neoformans/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica/genética , Factores de Intercambio de Guanina Nucleótido/genética , Hipoxia/genética , Proteínas ras/genética , Actinas/genética , Humanos , Mutación/genética , Fosforilación/genética , Transducción de Señal/genética
7.
Mol Microbiol ; 84(1): 130-46, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22339665

RESUMEN

This study shows the importance of PDK1, TOR and PKC signalling pathways to the basal tolerance of Cryptococcus neoformans towards fluconazole, the widely used drug for treatment of cryptococcosis. Mutations in genes integral to these pathway resulted in hypersensitivity to the drug. Upon fluconazole treatment, Mpk1, the downstream target of PKC was phosphorylated and its phosphorylation required Pdk1. We show genetically that the PDK1 and TOR phosphorylation sites in Ypk1 as well as the kinase activity of Ypk1 are required for the fluconazole basal tolerance. The involvement of these pathways in fluconazole basal tolerance was associated with sphingolipid homeostasis. Deletion of PDK1, SIN1 or YPK1 but not MPK1 affected cell viability in the presence of sphingolipid biosynthesis inhibitors. Concurrently, pdk1Δ, sin1Δ, ypk1Δ and mpk1Δ exhibited altered sphingolipid content and elevated fluconazole accumulation compared with the wild type. The fluconazole hypersensitivity phenotype of these mutants, therefore, appears to be the result of malfunction of the influx/efflux systems due to modifications of membrane sphingolipid content. Interestingly, the reduced virulence of these strains in mice suggests that the cryptococcal PDK1, PKC, and likely the TOR pathways play an important role in managing stress exerted either by fluconazole or by the host environment.


Asunto(s)
Antifúngicos/farmacología , Cryptococcus neoformans/metabolismo , Farmacorresistencia Fúngica , Fluconazol/farmacología , Proteínas Fúngicas/metabolismo , Transducción de Señal , Animales , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidad , Femenino , Proteínas Fúngicas/genética , Eliminación de Gen , Técnicas de Inactivación de Genes , Ratones , Ratones Endogámicos BALB C , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Esfingolípidos/metabolismo , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...