Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(15): 19283-19297, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38578950

RESUMEN

Lead-free BiFeO3-BaTiO3 (BF-BT) piezoceramics have sparked considerable interest in recent years due to their high piezoelectric performance and high Curie temperature. In this paper, we show how the addition of highly aligned porosity (between 40 and 60 vol %) improves the piezoelectric performance, sensing, and energy harvesting figures of merit in freeze-cast 0.70BiFeO3-0.30BaTiO3 piezoceramics compared to conventionally processed, nominally dense samples of the same composition. The dense and porous BF-BT ceramics had similar longitudinal piezoelectric coefficients (d33) immediately after poling, yet the dense samples were observed to age faster than those of porous ceramics. After 24 h, for example, the porous samples had significantly higher d33 values ranging from 112 to 124 pC/N, compared to 85 pC/N for the dense samples. Porous samples exhibited 3 and 5 times higher longitudinal piezoelectric voltage coefficient g33 and energy harvesting figure of merit d33g33 than dense samples due to the unexpected increase in d33 and decrease in relative permittivity with porosity. Spontaneous polarization (Ps) and remnant polarization (Pr) decrease as the porosity content increased from 37 to 59 vol %, as expected due to the lower volume of active material; however, normalized polarization values with respect to porosity level showed a slight increase in the porous materials relative to the dense BF-BT. Furthermore, the porous ceramics showed improved temperature-dependent strain-field response compared to the dense. As a result, these porous materials show excellent potential for use in high temperature sensing and harvesting applications.

2.
Adv Sci (Weinh) ; 9(9): e2105248, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35332701

RESUMEN

To date, a number of studies have reported the use of vibrations coupled to ferroelectric materials for water splitting. However, producing a stable particle suspension for high efficiency and long-term stability remains a challenge. Here, the first report of the production of a nanofluidic BaTiO3 suspension containing a mixture of cubic and tetragonal phases that splits water under ultrasound is provided. The BaTiO3 particle size reduces from approximately 400 nm to approximately 150 nm during the application of ultrasound and the fine-scale nature of the particulates leads to the formation of a stable nanofluid consisting of BaTiO3 particles suspended as a nanofluid. Long-term testing demonstrates repeatable H2 evolution over 4 days with a continuous 24 h period of stable catalysis. A maximum rate of H2 evolution is found to be 270 mmol h-1 g-1 for a loading of 5 mg l-1 of BaTiO3 in 10% MeOH/H2 O. This work indicates the potential of harnessing vibrations for water splitting in functional materials and is the first demonstration of exploiting a ferroelectric nanofluid for stable water splitting, which leads to the highest efficiency of piezoelectrically driven water splitting reported to date.

3.
Mater Sci Eng C Mater Biol Appl ; 126: 112192, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34082989

RESUMEN

Piezoelectric ceramics, such as BaTiO3, have gained considerable attention in bone tissue engineering applications thanks to their biocompatibility, ability to sustain a charged surface as well as improve bone cells' adhesion and proliferation. However, the poor processability and brittleness of these materials hinder the fabrication of three-dimensional scaffolds for load bearing tissue engineering applications. For the first time, this study focused on the fabrication and characterisation of BaTiO3 composite scaffolds by using a multi-material 3D printing technology. Polycaprolactone (PCL) was selected and used as dispersion phase for its low melting point, easy processability and wide adoption in bone tissue engineering. The proposed single-step extrusion-based strategy enabled a faster and solvent-free process, where raw materials in powder forms were mechanically mixed and subsequently fed into the 3D printing system for further processing. PCL, PCL/hydroxyapatite and PCL/BaTiO3 composite scaffolds were successfully produced with high level of consistency and an inner architecture made of seamlessly integrated layers. The inclusion of BaTiO3 ceramic particles (10% wt.) significantly improved the mechanical performance of the scaffolds (54 ± 0.5 MPa) compared to PCL/hydroxyapatite scaffolds (40.4 ± 0.1 MPa); moreover, the presence of BaTiO3 increased the dielectric permittivity over the entire frequency spectrum and tested temperatures. Human osteoblasts Saos-2 were seeded on scaffolds and cellular adhesion, proliferation, differentiation and deposition of bone-like extracellular matrix were evaluated. All tested scaffolds (PCL, PCL/hydroxyapatite and PCL/BaTiO3) supported cell growth and viability, preserving the characteristic cellular osteoblastic phenotype morphology, with PCL/BaTiO3 composite scaffolds exhibiting higher mineralisation (ALP activity) and deposited bone-like extracellular matrix (osteocalcin and collagen I). The single-step multi-material additive manufacturing technology used for the fabrication of electroactive PCL/BaTiO3 composite scaffolds holds great promise for sustainability (reduced material waste and manufacturing costs) and it importantly suggests PCL/BaTiO3 scaffolds as promising candidates for load bearing bone tissue engineering applications to solve unmet clinical needs.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Compuestos de Bario , Durapatita , Humanos , Poliésteres , Impresión Tridimensional , Titanio , Soporte de Peso
4.
Adv Mater ; 33(27): e2008452, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34033180

RESUMEN

Piezoelectric materials, with their unique ability for mechanical-electrical energy conversion, have been widely applied in important fields such as sensing, energy harvesting, wastewater treatment, and catalysis. In recent years, advances in material synthesis and engineering have provided new opportunities for the development of bio-piezoelectric materials with excellent biocompatibility and piezoelectric performance. Bio-piezoelectric materials have attracted interdisciplinary research interest due to recent insights on the impact of piezoelectricity on biological systems and their versatile biomedical applications. This review therefore introduces the development of bio-piezoelectric platforms from a broad perspective and highlights their design and engineering strategies. State-of-the-art biomedical applications in both biosensing and disease treatment will be systematically outlined. The relationships between the properties, structure, and biomedical performance of the bio-piezoelectric materials are examined to provide a deep understanding of the working mechanisms in a physiological environment. Finally, the development trends and challenges are discussed, with the aim to provide new insights for the design and construction of future bio-piezoelectric materials.


Asunto(s)
Materiales Biocompatibles , Electricidad , Ingeniería de Tejidos
5.
iScience ; 24(1): 101987, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33490897

RESUMEN

Wearable electronics are becoming increasingly important for medical applications as they have revolutionized the way physiological parameters are monitored. Ferroelectric materials show spontaneous polarization below the Curie temperature, which changes with electric field, temperature, and mechanical deformation. Therefore, they have been widely used in sensor and actuator applications. In addition, these materials can be used for conversion of human-body energy into electricity for powering wearable electronics. In this paper, we review the recent advances in flexible ferroelectric materials for wearable human energy harvesting and sensing. To meet the performance requirements for medical applications, the most suitable materials and manufacturing techniques are reviewed. The approaches used to enhance performance and achieve long-term sustainability and multi-functionality by integrating other active sensing mechanisms (e.g. triboelectric and piezoresistive effects) are discussed. Data processing and transmission as well as the contribution of wearable piezoelectric devices in early disease detection and monitoring vital signs are reviewed.

6.
Nanoscale Adv ; 3(5): 1362-1374, 2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36132863

RESUMEN

The reduction of CO2 into useful hydrocarbon chemicals has attracted significant attention in light of the depletion in fossil resources and the global demand for sustainable sources of energy. In this paper, we demonstrate piezo-catalytic electrochemical reduction of CO2 by exploiting low Curie temperature, T c ∼ 38 °C, Nb-doped lead zirconate titanate (PZTN) piezoelectric particulates. The large change in spontaneous polarisation of PZTN due to the acoustic pressures from to the application of ultrasound in the vicinity of the T c creates free charges for CO2 reduction. The effect of applied acoustic power, particulate agglomeration and the impact of T c on piezo-catalytic performance are explored. By optimization of the piezo-catalytic effect a promising piezo-catalytic CO2 reduction rate of 789 µmol g-1 h-1 is achieved, which is much larger than the those obtained from pyro-catalytic effects. This efficient and polarisation tunable piezo-catalytic route has potential to promote the development of CO2 reduction via the utilization of vibrational energy for environmental improvement.

7.
iScience ; 23(5): 101095, 2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32387960

RESUMEN

Hydrogen can contribute significantly to the energy mix of the near future, as it is an attractive replacement for fossil fuels due to its high energy density and low greenhouse gas emission. A fascinating approach is to use the polarization change of a ferroelectric due to an applied stress or temperature change to achieve piezo- or pyro-catalysis for both H2 generation and wastewater treatment. We exploit low Curie temperature (Tc) ferroelectrics for polarization-driven electrochemical reactions, where the large changes in polarization and high activity of a ferroelectric near its Tc provides a novel avenue for such materials. We present experimental evidence for enhanced water splitting and rhodamine B degradation via piezo-catalysis by ultrasonic excitation at its Tc. Such work provides an effective strategy for water splitting/treatment systems that employ low Tc ferroelectrics under the action of mechanical stress or/and thermal fluctuations.

8.
Angew Chem Int Ed Engl ; 59(20): 7808-7812, 2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32104966

RESUMEN

We demonstrate that trimethylamine borane can exhibit desirable piezoelectric and pyroelectric properties. The material was shown to be able operate as a flexible film for both thermal sensing, thermal energy conversion and mechanical sensing with high open circuit voltages (>10 V). A piezoelectric coefficient of d33 ≈10-16 pC N-1 , and pyroelectric coefficient of p≈25.8 µC m-2 K-1 were achieved after poling, with high pyroelectric figure of merits for sensing and harvesting, along with a relative permittivity of ϵ 33 σ ≈ 6.3.

9.
Energy Environ Sci ; 11(10): 2919-2927, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30713583

RESUMEN

Self-powered flexible electronics are of particular interest and important for next generation electronics due to their light weight, flexible and self-sustainable properties. Many self-powered sensors made from piezoelectric composite materials are either inflexible or possess low piezoelectricity. In this work, we demonstrate self-powered flexible and highly active pressure and shear sensors based on freeze casting ceramic-polymer structures. A lamellar lead zirconate titanate (PZT) structure is initially developed via freeze-casting and the piezoelectric composites are formed by impregnating a polydimethylsiloxane (PDMS) matrix into the aligned pore channels. The structured PZT-PDMS composites exhibited a high effective longitudinal piezoelectric coefficient (d 33*) of 750 pC N-1, which is higher than that of the monolithic ceramic due to the combination of bending and flexural effects. The use of freeze casting enables the manufacture of complex and arbitrary shaped 3D piezoelectric architectures, along with the unique advantages of low-cost and ease of fabrication. A 14 × 14 mm2 PZT-PDMS pressure sensor was able to bend to a small radius of 8 mm and maintain a high d 33. Furthermore, the manufactured self-powered sensors are demonstrated in a range of applications, such as acceleration, strain and touch sensors that use the d 33, d 31 and d 15 coefficients to detect longitudinal, transverse and shear loads. This work expands on the potential applications of freeze casting and provides new opportunities for the manufacture of future electronic sensors.

10.
Chem Soc Rev ; 46(24): 7757-7786, 2017 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-29125613

RESUMEN

Energy harvesting is a topic of intense interest that aims to convert ambient forms of energy such as mechanical motion, light and heat, which are otherwise wasted, into useful energy. In many cases the energy harvester or nanogenerator converts motion, heat or light into electrical energy, which is subsequently rectified and stored within capacitors for applications such as wireless and self-powered sensors or low-power electronics. This review covers the new and emerging area that aims to directly couple energy harvesting materials and devices with electro-chemical systems. The harvesting approaches to be covered include pyroelectric, piezoelectric, triboelectric, flexoelectric, thermoelectric and photovoltaic effects. These are used to influence a variety of electro-chemical systems such as applications related to water splitting, catalysis, corrosion protection, degradation of pollutants, disinfection of bacteria and material synthesis. Comparisons are made between the range harvesting approaches and the modes of operation are described. Future directions for the development of electro-chemical harvesting systems are highlighted and the potential for new applications and hybrid approaches are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA