Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 44(46): 19820-8, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26528675

RESUMEN

Tin(II) ketoacidoximates of the type [HON=CRCOO]2Sn (R = Me 1, CH2Ph 2) and (MeON=CMeCOO)3Sn](-) NH4(+)·2H2O 3 were synthesized by reacting pyruvate- and hydroxyl- or methoxylamine RONH2 (R = H, Me) with tin(II) chloride dihydrate SnCl2·2H2O. The single crystal X-ray structure reveals that the geometry at the Sn atom is trigonal bipyramidal in 1, 2 and trigonal pyramidal in 3. Inter- or intramolecular hydrogen bonding is observed in 1-3. Thermogravimetric (TG) analysis shows that the decomposition of 1-3 to SnO occurs at ca. 160 °C. The evolved gas analysis during TG indicates complete loss of the oximato ligand in one step for 1 whereas a small organic residue is additionally removed at temperatures >400 °C for 2. Above 140 °C, [HON=C(Me)COO]2Sn (1) decomposes in air to spherical SnO particles of size 10-500 nm. Spin coating of 1 on Si or a glass substrate followed by heating at 200 °C results in a uniform film of SnO. The band gap of the produced SnO film and nanomaterial was determined by diffuse reflectance spectroscopy to be in the range of 3.0-3.3 eV. X-ray photoelectron spectroscopy indicates surface oxidation of the SnO film to SnO2 in ambient atmosphere.

2.
Dalton Trans ; 40(16): 4307-14, 2011 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-21412543

RESUMEN

A novel molecular approach to the synthesis of polycrystalline Cu-doped ZnO rod-like nanostructures with variable concentrations of introduced copper ions in ZnO host matrix is presented. Spectroscopic (PLS, variable temperature XRD, XPS, ELNES, HERFD) and microscopic (HRTEM) analysis methods reveal the +II oxidation state of the lattice incorporated Cu ions. Photoluminescence spectra show a systematic narrowing (tuning) of the band gap depending on the amount of Cu(II) doping. The advantage of the template assembly of doped ZnO nanorods is that it offers general access to doped oxide structures under moderate thermal conditions. The doping content of the host structure can be individually tuned by the stoichiometric ratio of the molecular precursor complex of the host metal oxide and the molecular precursor complex of the dopant, Di-aquo-bis[2-(methoxyimino)-propanoato]zinc(II) 1 and -copper(II) 2. Moreover, these keto-dioximato complexes are accessible for a number of transition metal and lanthanide elements, thus allowing this synthetic approach to be expanded into a variety of doped 1D metal oxide structures.

3.
Nanoscale ; 3(3): 1102-12, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21183989

RESUMEN

Cuprous oxide agglomerates composed of 4-10 nm Cu2O nanoparticles were deposited on multiwalled carbon nanotubes (MWCNTs) and on ZnO/MWCNTs to give binary [Cu2O/MWCNT] and ternary [Cu2O/ZnO/MWCNT] composites. Di-aqua-bis[2-(methoxyimino)propanoato]copper Cu[O2CCCH3NOMe](2)·2H2O 1 in DMF was used as single source precursor for the deposition of nanoscaled Cu2O. The precursor decomposes either in air or under argon to yield CuO2 by in situ redox reaction. Thermogravimetric coupled mass spectroscopic analysis (TG-MS) of 1 revealed that methanol formed during the decomposition of 1 acts as a potential in situ reducing agent. Scanning electron microscopy (SEM) of the binary [Cu2O/MWCNT] nano-composite shows an increase of cuprous oxide loading depending on the precursor amount, along the periphery of the MWCNTs as well as formation of larger particle agglomerates. Transmission electron microscopy (TEM) of the sample shows crystalline domains of size 4-10 nm surrounded by an amorphous region within the larger particles. SEM and TEM of ternary [Cu2O/ZnO/MWCNT] clearly reveal that Cu2O nanoparticles are primarily deposited on ZnO rather than on MWCNTs. The catalytic activities of the [Cu2O/MWCNT] and [Cu2O/ZnO/MWCNT] binary and ternary composites were studied for the selective partial oxidation of ethanol to acetaldehyde with molecular oxygen. While using binary [Cu2O/MWCNT] (13.8 wt% Cu) as catalyst, acetaldehyde was obtained with a yield of 87% at 355 °C (selectivity 96% and conversion 91%). When nanoscale ZnO is present, the resulting [Cu2O/ZnO/MWCNT] composite shows preferential hydrogen and CO2 formation due to the fact that the dehydrogenation and total oxidation pathway is more favoured compared to the binary composite. Significant morphological changes of the catalyst during the catalytic process were observed.


Asunto(s)
Cobre/química , Etanol/química , Nanoestructuras/química , Óxido de Zinc/química , Catálisis , Ensayo de Materiales , Nanoestructuras/ultraestructura , Oxidación-Reducción , Tamaño de la Partícula
4.
Nanoscale ; 2(4): 613-22, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20644767

RESUMEN

ZnO (8-10 nm), gold (10-50 nm), and platinum (2-5 nm) nanoparticles were deposited on monoliths of regularly arranged three-dimensional (3D) carbon nanotubes of 40 nm diameter and length up to 30 microm. The single-source precursor complex di-aqua-bis[2-(methoxyimino)propanato](2)Zn(ii) in dimethylformamide was used for the deposition of nanoparticulate ZnO on an ordered 3D CNT scaffold by solution-phase deposition at temperatures as low as 150 degrees C. Au and Pt nanoparticles were deposited by the spontaneous reduction of aqueous solutions of HAuCl(4) and K(2)PtCl(4) on the surface of the macroscopic 3D CNT scaffolds. X-Ray diffraction (XRD) and transmission electron microscopy (TEM) indicate the crystalline nature and nanosize structure of the deposited ZnO, Au and Pt nanoparticles. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) investigations revealed a dense and homogeneous decoration of the individual CNTs throughout the 3D CNT scaffold structure. Thus the nanovoids of the carbon scaffold structure are therefore completely accessible leading to a homogenous particle deposition on the complete CNT outer surface. The kinetics of the spontaneous reduction of gold(iii) and platinum(ii) ions on the CNTs of the scaffold was followed by UV-vis spectroscopy and indicate (i) first-order reaction kinetics with respect to Au(3+) and Pt(2+) concentration and (ii) that the rate of reduction of Au(3+) is one order of magnitude slower than that of Pt(2+).


Asunto(s)
Oro/química , Nanotubos de Carbono/química , Platino (Metal)/química , Óxido de Zinc/química , Cinética , Nanopartículas/química , Nanopartículas/ultraestructura , Nanotubos de Carbono/ultraestructura , Oxidación-Reducción , Espectrofotometría Ultravioleta
5.
Chemistry ; 16(7): 2300-8, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-20029915

RESUMEN

Gold nanoparticles of 10-24 and 5-8 nm in size were obtained by chemical citrate reduction and UV photoreduction, respectively, on acid-treated multiwalled carbon nanotubes (MWCNTs) and on ZnO/MWCNT composites. The shape and size of the deposited Au nanoparticles were found to be dependent upon the synthetic method used. Single-crystalline, hexagonal gold particles were produced in the case of UV photoreduction on ZnO/MWCNT, whereas spherical Au particles were deposited on MWCNT when the chemical citrate reduction method was used. In the UV photoreduction route, n-doped ZnO serves as the e(-) donor, whereas the solvent is the hole trap. All materials were fully characterised by UV/Vis spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and BET surface analysis. The catalytic activity of the composites was studied for the selective hydrogenation of alpha,beta-unsaturated carbonyl compound 3,7-dimethyl-2,6-octadienal (citral). The Au/ZnO/MWCNT composite favours the formation of unsaturated alcohols (selectivity=50% at a citral conversion of 20%) due to the presence of single-crystalline, hexagonal gold particles, whereas saturated aldehyde formation is favoured in the case of the Au/MWCNT nanocomposite that contains spherical gold particles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...