Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Platelets ; 25(3): 151-61, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-23789792

RESUMEN

Platelets play a central role in atherosclerosis and atherothrombosis, and circulating endocannabinoids might modulate platelet function. Previous studies concerning effects of anandamide (N-arachidonylethanolamide) and 2-arachidonoylglycerol (2-AG) on platelets, mainly performed on isolated cells, provided conflicting results. We therefore investigated the action of three main endocannabinoids [anandamide, 2-AG and virodhamine (arachidonoylethanolamine)] on human platelets in blood and platelet-rich plasma (PRP). 2-AG and virodhamine induced platelet aggregation in blood, and shape change, aggregation and adenosine triphosphate (ATP) secretion in PRP. The EC50 of 2-AG and virodhamine for platelet aggregation in blood was 97 and 160 µM, respectively. Lower concentrations of 2-AG (20 µM) and virodhamine (50 µM) synergistically induced aggregation with other platelet stimuli. Platelet activation induced by 2-AG and virodhamine resembled arachidonic acid (AA)-induced aggregation: shape change, the first platelet response, ATP secretion and aggregation induced by 2-AG and virodhamine were all blocked by acetylsalicylic acid (ASA) or the specific thromboxane A2 (TXA2) antagonist daltroban. In addition, platelet activation induced by 2-AG and virodhamine in blood and PRP were inhibited by JZL184, a selective inhibitor of monoacylglycerol lipase (MAGL). In contrast to 2-AG and virodhamine, anandamide, a substrate of fatty acid amidohydrolase, was inactive. Synthetic cannabinoid receptor subtype 1 (CB1) and 2 (CB2) agonists lacked stimulatory as well as inhibitory platelet activity. We conclude that 2-AG and virodhamine stimulate platelets in blood and PRP by a MAGL-triggered mechanism leading to free AA and its metabolism by platelet cyclooxygenase-1/thromboxane synthase to TXA2. CB1, CB2 or non-CB1/CB2 receptors are not involved. Our results imply that ASA and MAGL inhibitors will protect platelets from activation by high endocannabinoid levels, and that pharmacological CB1- and CB2-receptor ligands will not affect platelets and platelet-dependent progression and complications of cardiovascular diseases.


Asunto(s)
Plaquetas/fisiología , Endocannabinoides/sangre , Activación Plaquetaria/fisiología , Adulto , Ácidos Araquidónicos/sangre , Ácidos Araquidónicos/farmacología , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Cannabinoides/sangre , Cannabinoides/farmacología , Ciclooxigenasa 1/sangre , Endocannabinoides/farmacología , Glicéridos/sangre , Glicéridos/farmacología , Humanos , Activación Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/farmacología , Alcamidas Poliinsaturadas/sangre , Alcamidas Poliinsaturadas/farmacología
3.
J Thromb Thrombolysis ; 32(2): 158-66, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21424266

RESUMEN

Atherosclerosis has an important inflammatory component. Macrophages accumulating in atherosclerotic arteries produce prostaglandin E(2) (PGE(2)), a main inflammatory mediator. Platelets express inhibitory receptors (EP(2), EP(4)) and a stimulatory receptor (EP(3)) for this prostanoid. Recently, it has been reported in ApoE(-/-) mice that PGE(2) accumulating in inflammatory atherosclerotic lesions might contribute to atherothrombosis after plaque rupture by activating platelet EP(3), and EP(3) blockade has been proposed to be a promising new approach in anti-thrombotic therapy. The aim of our investigation was to study the role of PGE(2) in human atherosclerotic plaques on human platelet function and thrombus formation. Plaque PGE(2) might either activate or inhibit platelets depending on stimulation of either EP(3) or EP(4), respectively. We found that the two EP(3)-antagonists AE5-599 (300 nM) and AE3-240 (300 nM) specifically and completely inhibited the synergistic effect of the EP(3)-agonist sulprostone on U46619-induced platelet aggregation in blood. However, these two EP(3)-antagonists neither inhibited atherosclerotic plaque-induced platelet aggregation, GPIIb/IIIa exposure, dense and alpha granule secretion in blood nor reduced plaque-induced platelet thrombus formation under arterial flow. The EP(4)-antagonist AE3-208 (1-3 µM) potentiated in combination with PGE(2) (1 µM) ADP-induced aggregation, demonstrating that PGE(2) enhances platelet aggregation when the inhibitory EP(4)-receptor is inactivated. However, plaque-induced platelet aggregation was not augmented after platelet pre-treatment with AE3-208, indicating that plaque PGE(2) does not stimulate the EP(4)-receptor. We found that PGE(2) was present in plaques only at very low levels (15 pg PGE(2)/mg plaque). We conclude that PGE(2) in human atherosclerotic lesions does not modulate (i.e. stimulate or inhibit) atherothrombosis in blood after plaque rupture.


Asunto(s)
Plaquetas/metabolismo , Estenosis Carotídea/metabolismo , Dinoprostona/metabolismo , Placa Aterosclerótica/metabolismo , Agregación Plaquetaria , Subtipo EP3 de Receptores de Prostaglandina E/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Trombosis/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología , Abortivos no Esteroideos/farmacología , Animales , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Plaquetas/patología , Estenosis Carotídea/genética , Estenosis Carotídea/patología , Dinoprostona/análogos & derivados , Dinoprostona/farmacología , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Naftalenos , Fenilbutiratos , Placa Aterosclerótica/genética , Placa Aterosclerótica/patología , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/genética , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Subtipo EP3 de Receptores de Prostaglandina E/agonistas , Subtipo EP3 de Receptores de Prostaglandina E/antagonistas & inhibidores , Subtipo EP3 de Receptores de Prostaglandina E/genética , Subtipo EP4 de Receptores de Prostaglandina E/agonistas , Subtipo EP4 de Receptores de Prostaglandina E/antagonistas & inhibidores , Subtipo EP4 de Receptores de Prostaglandina E/genética , Rotura Espontánea , Trombosis/genética , Vasoconstrictores/farmacología
4.
Cardiovasc Res ; 90(1): 157-64, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21106562

RESUMEN

AIMS: Oxidative processes and vascular inflammation underlying atherosclerosis lead to an accumulation of lysophosphatidic acid (LPA) molecules in the atheromatous intima. LPA, a platelet-activating component of human atherosclerotic plaques, possibly contributes to atherothrombus formation after plaque rupture. Human platelets express mRNA for the G protein-coupled receptors LPA1₋7 that derive from megakaryocytes. The aim of our study was to identify the functional LPA receptor(s) in human platelets by silencing individual LPA receptors in megakaryocytic (MK) cells. METHODS AND RESULTS: We studied shape change of two human MK cell lines (Meg-01, Dami) by turbidometry, phase-contrast and scanning electron microscopy. They showed upon LPA stimulation a rapid, Rho-kinase-mediated shape change similar to that of human platelets. By qRT-PCR analysis we found expression of LPA1₋7 in both cell lines; LPA4 and LPA5 were the most abundant receptor transcripts. In both Meg-01 and Dami cells, the rank order of activation by LPA species was similar to that found in platelets: alkyl-LPA 18:1 > alkyl-LPA 16:0 > acyl-LPA 18:1 >> alkyl-LPA 18:0. Knock-down of individual LPA receptors by siRNA showed that LPA-mediated activation of MK cells was mediated by LPA5, but not by LPA1₋4,6,7. Importantly, we found that human atherosclerotic plaque and lipid-rich core induced shape change of Dami cells, and that this effect was inhibited after LPA5 silencing. CONCLUSIONS: Our findings indicate that LPA5 mediates LPA-induced shape change of MK cells and support its involvement in atherosclerotic plaque and lipid-rich core-mediated platelet activation. This receptor could be an attractive novel target for antithrombotic therapy.


Asunto(s)
Aterosclerosis/metabolismo , Forma de la Célula , Lisofosfolípidos/metabolismo , Megacariocitos/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo , Aterosclerosis/patología , Línea Celular , Humanos , Metabolismo de los Lípidos , Megacariocitos/patología , Microscopía Electrónica de Rastreo , Nefelometría y Turbidimetría , Interferencia de ARN , Receptores del Ácido Lisofosfatídico/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Transfección , Quinasas Asociadas a rho/metabolismo
5.
J Transl Med ; 8: 128, 2010 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-21134286

RESUMEN

BACKGROUND: Platelet activation requires rapid remodeling of the actin cytoskeleton which is regulated by small GTP-binding proteins. By using the Rac1-specific inhibitor NSC23766, we have recently found that Rac1 is a central component of a signaling pathway that regulates dephosphorylation and activation of the actin-dynamising protein cofilin, dense and α-granule secretion, and subsequent aggregation of thrombin-stimulated washed platelets. OBJECTIVES: To study whether NSC23766 inhibits stimulus-induced platelet secretion and aggregation in blood. METHODS: Human platelet aggregation and ATP-secretion were measured in hirudin-anticoagulated blood and platelet-rich plasma (PRP) by using multiple electrode aggregometry and the Lumi-aggregometer. Platelet P-selectin expression was quantified by flow cytometry. RESULTS: NSC23766 (300 µM) inhibited TRAP-, collagen-, atherosclerotic plaque-, and ADP-induced platelet aggregation in blood by 95.1%, 93.4%, 92.6%, and 70%, respectively. The IC50 values for inhibition of TRAP-, collagen-, and atherosclerotic plaque-, were 50 ± 18 µM, 64 ± 35 µM, and 50 ± 30 µM NSC23766 (mean ± SD, n = 3-7), respectively. In blood containing RGDS to block integrin αIIbß3-mediated platelet aggregation, NSC23766 (300 µM) completely inhibited P-selectin expression and reduced ATP-secretion after TRAP and collagen stimulation by 73% and 85%, respectively. In ADP-stimulated PRP, NSC23766 almost completely inhibited P-selectin expression, in contrast to aspirin, which was ineffective. Moreover, NSC23766 (300 µM) decreased plaque-stimulated platelet adhesion/aggregate formation under arterial flow conditions (1500s-1) by 72%. CONCLUSIONS: Rac1-mediated signaling plays a central role in secretion-dependent platelet aggregation in blood stimulated by a wide array of platelet agonists including atherosclerotic plaque. By specifically inhibiting platelet secretion, the pharmacological targeting of Rac1 could be an interesting approach in the development of future antiplatelet drugs.


Asunto(s)
Adenosina Trifosfato/metabolismo , Placa Aterosclerótica/patología , Agregación Plaquetaria/efectos de los fármacos , Transducción de Señal , Proteína de Unión al GTP rac1/metabolismo , Fosfatasa Ácida/metabolismo , Adenosina Difosfato/farmacología , Aminoquinolinas/farmacología , Plaquetas/efectos de los fármacos , Plaquetas/enzimología , Colágeno/farmacología , Humanos , Isoenzimas/metabolismo , Selectina-P/metabolismo , Plasma Rico en Plaquetas/metabolismo , Prostaglandina-Endoperóxido Sintasas/metabolismo , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacos , Fosfatasa Ácida Tartratorresistente , Trombosis/patología , Trombosis/fisiopatología
8.
J Biol Chem ; 284(25): 17304-17319, 2009 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-19366702

RESUMEN

Lysophosphatidic acid (LPA) is a ligand for LPA(1-3) of the endothelial differentiation gene family G-protein-coupled receptors, and LPA(4-8) is related to the purinergic family G-protein-coupled receptor. Because the structure-activity relationship (SAR) of GPR92/LPA(5) is limited and whether LPA is its preferred endogenous ligand has been questioned in the literature, in this study we applied a combination of computational and experimental site-directed mutagenesis of LPA(5) residues predicted to interact with the headgroup of LPA. Four residues involved in ligand recognition in LPA(5) were identified as follows: R2.60N mutant abolished receptor activation, whereas H4.64E, R6.62A, and R7.32A greatly reduced receptor activation. We also investigated the SAR of LPA(5) using LPA analogs and other non-lysophospholipid ligands. SAR revealed that the rank order of agonists is alkyl glycerol phosphate > LPA > farnesyl phosphates >> N-arachidonoylglycine. These results confirm LPA(5) to be a bona fide lysophospholipid receptor. We also evaluated several compounds with previously established selectivity for the endothelial differentiation gene receptors and found several that are LPA(5) agonists. A pharmacophore model of LPA(5) binding requirements was developed for in silico screening, which identified two non-lipid LPA(5) antagonists. Because LPA(5) transcripts are abundant in human platelets, we tested its antagonists on platelet activation and found that these non-lipid LPA(5) antagonists inhibit platelet activation. The present results suggest that selective inhibition of LPA(5) may provide a basis for future anti-thrombotic therapies.


Asunto(s)
Activación Plaquetaria/fisiología , Receptores del Ácido Lisofosfatídico/fisiología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión/genética , Señalización del Calcio , Humanos , Técnicas In Vitro , Ligandos , Lisofosfolípidos/química , Lisofosfolípidos/metabolismo , Lisofosfolípidos/farmacología , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Activación Plaquetaria/efectos de los fármacos , Receptores del Ácido Lisofosfatídico/agonistas , Receptores del Ácido Lisofosfatídico/antagonistas & inhibidores , Receptores del Ácido Lisofosfatídico/química , Receptores del Ácido Lisofosfatídico/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...