RESUMEN
Computer-aided diagnosis (CAD) systems play a vital role in modern research by effectively minimizing both time and costs. These systems support healthcare professionals like radiologists in their decision-making process by efficiently detecting abnormalities as well as offering accurate and dependable information. These systems heavily depend on the efficient selection of features to accurately categorize high-dimensional biological data. These features can subsequently assist in the diagnosis of related medical conditions. The task of identifying patterns in biomedical data can be quite challenging due to the presence of numerous irrelevant or redundant features. Therefore, it is crucial to propose and then utilize a feature selection (FS) process in order to eliminate these features. The primary goal of FS approaches is to improve the accuracy of classification by eliminating features that are irrelevant or less informative. The FS phase plays a critical role in attaining optimal results in machine learning (ML)-driven CAD systems. The effectiveness of ML models can be significantly enhanced by incorporating efficient features during the training phase. This empirical study presents a methodology for the classification of biomedical data using the FS technique. The proposed approach incorporates three soft computing-based optimization algorithms, namely Teaching Learning-Based Optimization (TLBO), Elephant Herding Optimization (EHO), and a proposed hybrid algorithm of these two. These algorithms were previously employed; however, their effectiveness in addressing FS issues in predicting human diseases has not been investigated. The following evaluation focuses on the categorization of benign and malignant tumours using the publicly available Wisconsin Diagnostic Breast Cancer (WDBC) benchmark dataset. The five-fold cross-validation technique is employed to mitigate the risk of over-fitting. The evaluation of the proposed approach's proficiency is determined based on several metrics, including sensitivity, specificity, precision, accuracy, area under the receiver-operating characteristic curve (AUC), and F1-score. The best value of accuracy computed through the suggested approach is 97.96%. The proposed clinical decision support system demonstrates a highly favourable classification performance outcome, making it a valuable tool for medical practitioners to utilize as a secondary opinion and reducing the overburden of expert medical practitioners.
RESUMEN
The process of feature selection (FS) is vital aspect of machine learning (ML) model's performance enhancement where the objective is the selection of the most influential subset of features. This paper suggests the Gravitational search optimization algorithm (GSOA) technique for metaheuristic-based FS. Glaucoma disease is selected as the subject of investigation as this disease is spreading worldwide at a very fast pace; 111 million instances of glaucoma are expected by 2040, up from 64 million in 2015. It causes widespread vision impairment. Optic nerve fibres can be degraded and cannot be replaced later in this disease. As a starting point, the retinal fundus images of glaucoma infected persons and healthy persons are used, and 36 features were retrieved from these images of public benchmark datasets and private dataset. Six ML models are trained for classification on the basis of the GSOA's returned subset of features. The suggested FS technique enhances classification performance with selection of most influential features. The eight statistical performance evaluating parameters along with execution time are calculated. The training and testing have been performed using a split approach (70:30), 5-fold cross validation (CV), as well as 10-fold CV. The suggested approach achieved 95.36 % accuracy. Due to its auspicious performance, doctors might use the suggested method to receive a second opinion, which would also help overburdened skilled medical practitioners and save patients from vision loss.
Asunto(s)
Sistemas de Apoyo a Decisiones Clínicas , Glaucoma , Humanos , Glaucoma/diagnóstico por imagen , Fondo de Ojo , Aprendizaje Automático , AlgoritmosRESUMEN
Glaucoma is the dominant reason for irreversible blindness worldwide, and its best remedy is early and timely detection. Optical coherence tomography has come to be the most commonly used imaging modality in detecting glaucomatous damage in recent years. Deep Learning using Optical Coherence Tomography Modality helps in predicting glaucoma more accurately and less tediously. This experimental study aims to perform glaucoma prediction using eight different ImageNet models from Optical Coherence Tomography of Glaucoma. A thorough investigation is performed to evaluate these models' performances on various efficiency metrics, which will help discover the best performing model. Every net is tested on three different optimizers, namely Adam, Root Mean Squared Propagation, and Stochastic Gradient Descent, to find the best relevant results. An attempt has been made to improvise the performance of models using transfer learning and fine-tuning. The work presented in this study was initially trained and tested on a private database that consists of 4220 images (2110 normal optical coherence tomography and 2110 glaucoma optical coherence tomography). Based on the results, the four best-performing models are shortlisted. Later, these models are tested on the well-recognized standard public Mendeley dataset. Experimental results illustrate that VGG16 using the Root Mean Squared Propagation Optimizer attains auspicious performance with 95.68% accuracy. The proposed work concludes that different ImageNet models are a good alternative as a computer-based automatic glaucoma screening system. This fully automated system has a lot of potential to tell the difference between normal Optical Coherence Tomography and glaucomatous Optical Coherence Tomography automatically. The proposed system helps in efficiently detecting this retinal infection in suspected patients for better diagnosis to avoid vision loss and also decreases senior ophthalmologists' (experts) precious time and involvement.
RESUMEN
The design and development of a computer-based system for breast cancer detection are largely reliant on feature selection techniques. These techniques are used to reduce the dimensionality of the feature space by removing irrelevant or redundant features from the original set. This article presents a hybrid feature selection method that is based on the Butterfly optimization algorithm (BOA) and the Ant Lion optimizer (ALO) to form a hybrid BOAALO method. The optimal subset of features chosen by BOAALO is utilized to predict the benign or malignant status of breast tissue using three classifiers: artificial neural network, adaptive neuro-fuzzy inference system, and support vector machine. The goodness of the proposed method is tested using 651 mammogram images. The results show that BOAALO outperforms the original BOA and ALO in terms of accuracy, sensitivity, specificity, kappa value, type-I, and type-II error as well as the receiver operating characteristics curve. Additionally, the suggested method's robustness is assessed and compared to five well-known methods using a benchmark dataset. The experimental findings demonstrate that BOAALO achieves a high degree of accuracy with a minimum number of features. These results support the suggested method's applicability for breast cancer diagnosis.
Asunto(s)
Neoplasias de la Mama , Algoritmos , Neoplasias de la Mama/diagnóstico por imagen , Femenino , Humanos , Mamografía , Redes Neurales de la Computación , Máquina de Vectores de SoporteRESUMEN
COVID-19 is an ongoing pandemic that is widely spreading daily and reaches a significant community spread. X-ray images, computed tomography (CT) images and test kits (RT-PCR) are three easily available options for predicting this infection. Compared to the screening of COVID-19 infection from X-ray and CT images, the test kits(RT-PCR) available to diagnose COVID-19 face problems such as high analytical time, high false negative outcomes, poor sensitivity and specificity. Radiological signatures that X-rays can detect have been found in COVID-19 positive patients. Radiologists may examine these signatures, but it's a time-consuming and error-prone process (riddled with intra-observer variability). Thus, the chest X-ray analysis process needs to be automated, for which AI-driven tools have proven to be the best choice to increase accuracy and speed up analysis time, especially in the case of medical image analysis. We shortlisted four datasets and 20 CNN-based models to test and validate the best ones using 16 detailed experiments with fivefold cross-validation. The two proposed models, ensemble deep transfer learning CNN model and hybrid LSTMCNN, perform the best. The accuracy of ensemble CNN was up to 99.78% (96.51% average-wise), F1-score up to 0.9977 (0.9682 average-wise) and AUC up to 0.9978 (0.9583 average-wise). The accuracy of LSTMCNN was up to 98.66% (96.46% average-wise), F1-score up to 0.9974 (0.9668 average-wise) and AUC up to 0.9856 (0.9645 average-wise). These two best pre-trained transfer learning-based detection models can contribute clinically by offering the patients prediction correctly and rapidly.
RESUMEN
This paper proposes a deep image analysis-based model for glaucoma diagnosis that uses several features to detect the formation of glaucoma in retinal fundus. These features are combined with most extracted parameters like inferior, superior, nasal, and temporal region area, and cup-to-disc ratio that overall forms a deep image analysis. This proposed model is exercised to investigate the various aspects related to the prediction of glaucoma in retinal fundus images that help the ophthalmologist in making better decisions for the human eye. The proposed model is presented with the combination of four machine learning algorithms that provide the classification accuracy of 98.60% while other existing models like support vector machine (SVM), K-nearest neighbors (KNN), and Naïve Bayes provide individually with accuracies of 97.61%, 90.47%, and 95.23% respectively. These results clearly demonstrate that this proposed model offers the best methodology to an early diagnosis of glaucoma in retinal fundus.