Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 16(2): e1008313, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32059031

RESUMEN

Many bacteria use quorum sensing (QS) to regulate virulence factor production in response to changes in population density. QS is mediated through the production, secretion, and detection of signaling molecules called autoinducers (AIs) to modulate population-wide behavioral changes. Four histidine kinases, LuxPQ, CqsS, CqsR and VpsS, have been identified in Vibrio cholerae as QS receptors to activate virulence gene expression at low cell density. Detection of AIs by these receptors leads to virulence gene repression at high cell density. The redundancy among these receptors is puzzling since any one of the four receptors is sufficient to support colonization of V. cholerae in the host small intestine. It is believed that one of the functions of such circuit architecture is to prevent interference on any single QS receptor. However, it is unclear what natural molecules can interfere V. cholerae QS and in what environment interference is detrimental. We show here mutants expressing only CqsR without the other three QS receptors are defective in colonizing the host large intestine. We identified ethanolamine, a common intestinal metabolite that can function as a chemical source of QS interference. Ethanolamine specifically interacts with the ligand-binding CACHE domain of CqsR and induces a premature QS response in V. cholerae mutants expressing only CqsR without the other three QS receptors. The effect of ethanolamine on QS gene expression and host colonization is abolished by mutations that disrupt CqsR signal sensing. V. cholerae defective in producing ethanolamine is still proficient in QS, therefore, ethanolamine functions only as an external cue for CqsR. Our findings suggest the inhibitory effect of ethanolamine on CqsR could be a possible source of QS interference but is masked by the presence of the other parallel QS pathways, allowing V. cholerae to robustly colonize the host.


Asunto(s)
Histidina Quinasa/metabolismo , Percepción de Quorum/fisiología , Vibrio cholerae/metabolismo , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica/genética , Histidina Quinasa/genética , Unión Proteica/fisiología , Transducción de Señal/genética , Vibrio cholerae/patogenicidad , Virulencia/genética
2.
Proc Natl Acad Sci U S A ; 115(26): E6048-E6055, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29891656

RESUMEN

Sensing and responding to environmental changes is essential for bacteria to adapt and thrive, and nucleotide-derived second messengers are central signaling systems in this process. The most recently identified bacterial cyclic dinucleotide second messenger, 3', 3'-cyclic GMP-AMP (cGAMP), was first discovered in the El Tor biotype of Vibrio cholerae The cGAMP synthase, DncV, is encoded on the VSP-1 pathogenicity island, which is found in all El Tor isolates that are responsible for the current seventh pandemic of cholera but not in the classical biotype. We determined that unregulated production of DncV inhibits growth in El Tor V. cholerae but has no effect on the classical biotype. This cGAMP-dependent phenotype can be suppressed by null mutations in vc0178 immediately 5' of dncV in VSP-1. VC0178 [renamed as cGAMP-activated phospholipase in Vibrio (CapV)] is predicted to be a patatin-like phospholipase, and coexpression of capV and dncV is sufficient to induce growth inhibition in classical V. cholerae and Escherichia coli Furthermore, cGAMP binds to CapV and directly activates its hydrolase activity in vitro. CapV activated by cGAMP in vivo degrades phospholipids in the cell membrane, releasing 16:1 and 18:1 free fatty acids. Together, we demonstrate that cGAMP activates CapV phospholipase activity to target the cell membrane and suggest that acquisition of this second messenger signaling pathway may contribute to the emergence of the El Tor biotype as the etiological agent behind the seventh cholera pandemic.


Asunto(s)
Proteínas Bacterianas/metabolismo , Membrana Celular/enzimología , Nucleótidos Cíclicos/metabolismo , Fosfolipasas/metabolismo , Sistemas de Mensajero Secundario/fisiología , Vibrio cholerae/enzimología , Proteínas Bacterianas/genética , Membrana Celular/genética , Nucleótidos Cíclicos/genética , Fosfolipasas/genética , Vibrio cholerae/genética
3.
J Biol Chem ; 292(50): 20544-20557, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29030429

RESUMEN

Rap/Rgg/NprR/PlcR/PrgX (RRNPP) quorum-sensing systems use extracellular peptide pheromones that are detected by cytoplasmic receptors to regulate gene expression in firmicute bacteria. Rgg-type receptors are allosterically regulated through direct pheromone binding to control transcriptional activity; however, the receptor activation mechanism remains poorly understood. Previous work has identified a disulfide bond between Cys-45 residues within the homodimer interface of Rgg2 from Streptococcus dysgalactiae (Rgg2Sd). Here, we compared two Rgg2Sd(C45S) X-ray crystal structures with that of wild-type Rgg2Sd and found that in the absence of the intermolecular disulfide, the Rgg2Sd dimer interface is destabilized and Rgg2Sd can adopt multiple conformations. One conformation closely resembled the "disulfide-locked" Rgg2Sd secondary and tertiary structures, but another displayed more extensive rigid-body shifts as well as dramatic secondary structure changes. In parallel experiments, a genetic screen was used to identify mutations in rgg2 of Streptococcus pyogenes (rgg2Sp ) that conferred pheromone-independent transcriptional activation of an Rgg2-stimulated promoter. Eight mutations yielding constitutive Rgg2 activity, designated Rgg2Sp*, were identified, and five of them clustered in or near an Rgg2 region that underwent conformational changes in one of the Rgg2Sd(C45S) crystal structures. The Rgg2Sp* mutations increased Rgg2Sp sensitivity to pheromone and pheromone variants while displaying decreased sensitivity to the Rgg2 antagonist cyclosporine A. We propose that Rgg2Sp* mutations invoke shifts in free-energy bias to favor the active state of the protein. Finally, we present evidence for an electrostatic interaction between an N-terminal Asp of the pheromone and Arg-153 within the proposed pheromone-binding pocket of Rgg2Sp.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cisteína/química , Modelos Moleculares , Mutación Puntual , Streptococcus pyogenes/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Sustitución de Aminoácidos , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Cristalografía por Rayos X , Ciclosporina/farmacología , Dimerización , Farmacorresistencia Bacteriana , Cinética , Mutagénesis Sitio-Dirigida , Feromonas/química , Feromonas/metabolismo , Feromonas/farmacología , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidad Proteica/efectos de los fármacos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Electricidad Estática , Streptococcus pyogenes/efectos de los fármacos , Transactivadores/antagonistas & inhibidores , Transactivadores/química , Transactivadores/genética , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/química , Factores de Transcripción/genética
4.
Mol Microbiol ; 90(6): 1262-76, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24134710

RESUMEN

Cyclic di-GMP (c-di-GMP) controls the transition between sessility and motility in many bacterial species. This regulation is achieved by a variety of mechanisms including alteration of transcription initiation and inhibition of flagellar function. How c-di-GMP inhibits the motility of Vibrio cholerae has not been determined. FlrA, a homologue of the c-di-GMP binding Pseudomonas aeruginosa motility regulator FleQ, is the master regulator of the V. cholerae flagellar biosynthesis regulon. Here we show that binding of c-di-GMP to FlrA abrogates binding of FlrA to the promoter of the flrBC operon, deactivating expression of the flagellar biosynthesis regulon. FlrA does not regulate expression of extracellular Vibrio polysaccharide (VPS) synthesis genes. Mutation of the FlrA amino acids R135 and R176 to histidine abrogates binding of c-di-GMP to FlrA, rendering FlrA active in the presence of high levels of c-di-GMP. Surprisingly, c-di-GMP still inhibited the motility of V. cholerae only expressing the c-di-GMP blind FlrA(R176H) mutant. We determined that this flagellar transcription-independent inhibition is due to activation of VPS production by c-di-GMP. Therefore, c-di-GMP prevents motility of V. cholerae by two distinct but functionally redundant mechanisms.


Asunto(s)
Proteínas Bacterianas/metabolismo , GMP Cíclico/análogos & derivados , Regulación Bacteriana de la Expresión Génica , Polisacáridos Bacterianos/metabolismo , Transcripción Genética , Vibrio cholerae/fisiología , Arginina/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , GMP Cíclico/fisiología , Flagelos/metabolismo , Histidina/metabolismo , Modelos Moleculares , Movimiento , Mutación , Operón , Conformación Proteica , Estructura Terciaria de Proteína , Vibrio cholerae/genética , Vibrio cholerae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...