Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Clin Pharmacol Ther ; 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39345195

RESUMEN

Psychedelics have recently re-emerged as potential treatments for various psychiatric conditions that impose major public health costs and for which current treatment options have limited efficacy. At the same time, personalized medicine is increasingly being implemented in psychiatry to provide individualized drug dosing recommendations based on genetics. This review brings together these topics to explore the utility of pharmacogenomics (a key component of personalized medicine) in psychedelic-assisted therapies. We summarized the literature and explored the potential implications of genetic variability on the pharmacodynamics and pharmacokinetics of psychedelic drugs including lysergic acid diethylamide (LSD), psilocybin, N,N-dimethyltryptamine (DMT), 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), ibogaine and 3,4-methylenedioxymethamphetamine (MDMA). Although existing evidence is limited, particularly concerning pharmacodynamics, studies investigating pharmacokinetics indicate that genetic variants in drug-metabolizing enzymes, such as cytochrome P450, impact the intensity of acute psychedelic effects for LSD and ibogaine, and that a dose reduction for CYP2D6 poor metabolizers may be appropriate. Furthermore, based on the preclinical evidence, it can be hypothesized that CYP2D6 metabolizer status might contribute to altered acute psychedelic experiences with 5-MeO-DMT and psilocybin when combined with monoamine oxidase inhibitors. In conclusion, considering early evidence that genetic factors can influence the effects of certain psychedelics, we suggest that pharmacogenomic testing should be further investigated in clinical research. This is necessary to evaluate its utility in improving the safety and therapeutic profile of psychedelic therapies and a potential future role in personalizing psychedelic-assisted therapies, should these treatments become available.

2.
Br J Clin Pharmacol ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39147586

RESUMEN

Tacrolimus, a calcineurin inhibitor, is a highly effective immunosuppressant used in solid organ transplantation (SOT). However, it is characterized by a narrow therapeutic range and high inter-patient variability in pharmacokinetics. Standard weight-based dosing followed by empiric dose titration is suboptimal in controlling drug concentrations, increasing risk of rejection or toxicity, particularly in the initial months post transplantation. This review explores the potential of combined pre-transplant genotyping and pharmacokinetic (PK) modelling to improve tacrolimus dosing in paediatric SOT recipients. A systematic search of Medline, Embase and Cochrane databases identified studies published between March 2013 and March 2023 that investigated genotype- and PK model-informed tacrolimus dosing in children post-SOT. The Newcastle-Ottawa Scale assessed study quality. Seven studies encompassing paediatric kidney, heart, liver and lung transplants reported using genotype and model-informed dosing. A combination of clinical and genetic factors significantly impacts tacrolimus clearance and thus initial dose recommendation. Body size, transplant organ and co-medications were consistently important, while either time post-transplant or haematocrit emerged in some studies. Several models were identified, however, with limitations evident in some and with absence of evidence for their effectiveness in optimizing initial and subsequent dosing. This review highlights the development of PK models in paediatric SOT that integrate genotype and clinical covariates to personalize early tacrolimus dosing. While promising, prospective studies are needed to validate and confirm their effectiveness in improving time to therapeutic concentrations and reducing under- or overexposure. This approach has the potential to optimize tacrolimus therapy in paediatric SOT, thereby improving outcomes.

3.
BMJ Open ; 14(5): e085115, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38760050

RESUMEN

INTRODUCTION: DNA-informed prescribing (termed pharmacogenomics, PGx) is the epitome of personalised medicine. Despite international guidelines existing, its implementation in paediatric oncology remains sparse. METHODS AND ANALYSIS: Minimising Adverse Drug Reactions and Verifying Economic Legitimacy-Pharmacogenomics Implementation in Children is a national prospective, multicentre, randomised controlled trial assessing the impact of pre-emptive PGx testing for actionable PGx variants on adverse drug reaction (ADR) incidence in patients with a new cancer diagnosis or proceeding to haematopoetic stem cell transplant. All ADRs will be prospectively collected by surveys completed by parents/patients using the National Cancer Institute Pediatric Patient Reported [Ped-PRO]-Common Terminology Criteria for Adverse Events (CTCAE) (weeks 1, 6 and 12). Pharmacist will assess for causality and severity in semistructured interviews using the CTCAE and Liverpool Causality Assessment Tool. The primary outcome is a reduction in ADRs among patients with actionable PGx variants, where an ADR will be considered as any CTCAE grade 2 and above for non-haematological toxicities and any CTCAE grade 3 and above for haematological toxicities Cost-effectiveness of pre-emptive PGx (secondary outcome) will be compared with standard of care using hospital inpatient and outpatient data along with the validated Childhood Health Utility 9D Instrument. Power and statistics considerations: A sample size of 440 patients (220 per arm) will provide 80% power to detect a 24% relative risk reduction in the primary endpoint of ADRs (two-sided α=5%, 80% vs 61%), allowing for 10% drop-out. ETHICS AND DISSEMINATION: The ethics approval of the trial has been obtained from the Royal Children's Hospital Ethics Committee (HREC/89083/RCHM-2022). The ethics committee of each participating centres nationally has undertaken an assessment of the protocol and governance submission. TRIAL REGISTRATION NUMBER: NCT05667766.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Farmacogenética , Humanos , Niño , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Estudios Prospectivos , Ensayos Clínicos Controlados Aleatorios como Asunto , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Estudios Multicéntricos como Asunto , Medicina de Precisión/economía , Trasplante de Células Madre Hematopoyéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...