Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 11(2)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36838272

RESUMEN

Streptococcus pyogenes, or Group A Streptococcus (GAS), is a strictly human pathogen that causes a wide range of diseases, including skin and soft tissue infections, toxic shock syndrome and acute rheumatic fever. We have recently reported that Spy1094 and Spy1370 of S. pyogenes serotype M1 are N-acetylglucosamine (GlcNAc) deacetylases. We have generated spy1094 and spy1370 gene deletion mutants in S. pyogenes and gain-of-function mutants in Lactococcus lactis. Similar to other cell wall deacetylases, our results show that Spy1094 and Spy1370 confer lysozyme-resistance. Furthermore, deletion of the genes decreased S. pyogenes virulence in a human whole blood killing assay and a Galleria mellonella (Greater wax moth) larvae infection model. Expression of the two genes in L. lactis resulted in increased lysozyme resistance and survival in whole human blood, and reduced survival of infected G. mellonella larvae. Deletion of the spy1370, but not the spy1094 gene, decreased resistance to the cationic antimicrobial peptide cecropin B, whereas both enzymes increased biofilm formation, probably resulting from the increase in positive charges due to deacetylation of the cell wall. In conclusion, Spy1094 and Spy1370 are important S. pyogenes virulence factors and might represent attractive targets for the development of antibacterial agents.

2.
Sci Rep ; 11(1): 4353, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33623073

RESUMEN

Pili of Group A Streptococcus (GAS) are surface-exposed structures involved in adhesion and colonisation of the host during infection. The major protein component of the GAS pilus is the T-antigen, which multimerises to form the pilus shaft. There are currently no licenced vaccines against GAS infections and the T-antigen represents an attractive target for vaccination. We have generated a multivalent vaccine called TeeVax1, a recombinant protein that consists of a fusion of six T-antigen domains. Vaccination with TeeVax1 produces opsonophagocytic antibodies in rabbits and confers protective efficacy in mice against invasive disease. Two further recombinant proteins, TeeVax2 and TeeVax3 were constructed to cover 12 additional T-antigens. Combining TeeVax1-3 produced a robust antibody response in rabbits that was cross-reactive to a full panel of 21 T-antigens, expected to provide over 95% vaccine coverage. These results demonstrate the potential for a T-antigen-based vaccine to prevent GAS infections.


Asunto(s)
Antígenos Bacterianos/inmunología , Vacunas Estreptocócicas/inmunología , Streptococcus pyogenes/inmunología , Animales , Antígenos Bacterianos/química , Antígenos Bacterianos/genética , Línea Celular Tumoral , Humanos , Inmunogenicidad Vacunal , Ratones , Conejos , Vacunas Combinadas/inmunología , Vacunas Sintéticas/inmunología
3.
J Microbiol Immunol Infect ; 53(1): 42-48, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29158081

RESUMEN

BACKGROUND: Streptococcus pyogenes, or Group A Streptococcus (GAS), is a human pathogen that causes a wide range of diseases, including pharyngitis, necrotizing fasciitis and toxic shock syndrome. The bacterium produces a large arsenal of virulence factors, including the cell wall-anchored Streptococcus pyogenes nuclease A (SpnA), which facilitates immune evasion by degrading the DNA backbone of neutrophil extracellular traps. SpnA consists of a C-terminal endo/exonuclease domain and a N-terminal domain of unknown function. METHODS: Recombinant SpnA mutants were generated by alanine conversion of selected residues that were predicted to play a role in the enzymatic activity and tested for their ability to degrade DNA. A GAS spnA deletion mutant was complemented with a plasmid-borne catalytic site mutant and analyzed for virulence in a Galleria mellonella (wax moth) infection model. RESULTS: Several predicted residues were experimentally confirmed to play a role in SpnA enzymatic activity. These include Glu592, Arg696, His716, Asp767, Asn769, Asp810 and Asp842. Complementation of a GAS spnA deletion mutant with a spnA H716A mutant gene partially restored virulence in wax moth larvae, whereas complementation with the spnA wt gene completely restored activity. Furthermore, complementation with a secreted form of SpnA showed reduced virulence. CONCLUSION: Our results show that abolishing the enzymatic activity of SpnA only partially reduces virulence suggesting that SpnA has an additional virulence function, which might be located on the N-terminal domain. Furthermore, cell wall-anchoring of SpnA results in higher virulence compared to secreted SpnA, probably due to a higher local density of the enzyme.


Asunto(s)
Endonucleasas/genética , Streptococcus pyogenes/enzimología , Streptococcus pyogenes/patogenicidad , Animales , Larva/microbiología , Mariposas Nocturnas/microbiología , Mutación , Proteínas Recombinantes , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/genética , Virulencia , Factores de Virulencia/genética
4.
Sci Rep ; 9(1): 6975, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31043651

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

5.
Sci Rep ; 7(1): 7174, 2017 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-28775292

RESUMEN

The human pathogen Group A Streptococcus (GAS) produces pili that are involved in adhesion and colonisation of the host. These surface-exposed pili are immunogenic and therefore represent an attractive target for vaccine development. The pilus is encoded in the genomic region known as the fibronectin-collagen-T-antigen (FCT)-region, of which at least nine different types have been identified. In this study we investigate expressing two of the most common FCT-types (FCT-3 and FCT-4) in the food-grade bacteria Lactococcus lactis for use as a mucosal vaccine. We show that mucosally delivered L. lactis expressing GAS pili generates specific antibody responses in rabbits. Rabbit anti-pilus antibodies were shown to have both a neutralising effect on bacterial adhesion, and immunised rabbit antiserum was able to facilitate immune-mediated killing of bacteria via opsonophagocytosis. Furthermore, intranasal immunisation of mice improved clearance rates of GAS after nasopharyngeal challenge. These results demonstrate the potential for a novel, pilus-based vaccine to protect against GAS infections.


Asunto(s)
Proteínas Fimbrias/inmunología , Lactococcus lactis/inmunología , Vacunas Estreptocócicas/inmunología , Streptococcus pyogenes/inmunología , Animales , Antígenos Bacterianos , Fibronectinas , Proteínas Fimbrias/genética , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/inmunología , Lactococcus lactis/genética , Ratones , Conejos , Infecciones Estreptocócicas , Vacunas Estreptocócicas/farmacología , Streptococcus pyogenes/genética , Vacunación , Vacunas Sintéticas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...