Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Adv Colloid Interface Sci ; 327: 103153, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38604082

RESUMEN

Zeolite imidazole framework (ZIF) materials are a class of metallic organic framework (MOF) materials that have several potential applications in the food and other industries. They consist of metal ions or clusters of metal ions coordinated with imidazole-based organic linkers, creating a three-dimensional solid structure with well-defined pores and channels. ZIFs possess several important features, including high porosity, tunable pore sizes, high surface areas, adjustable surface chemistries, and good stabilities. These characteristics make them highly versatile materials that can be used in a variety of applications, including smart and active food packaging. Based on their controllable compositions, dimensions, and pore sizes, the properties of ZIFs can be tailored for a diverse range of applications, including energy storage, sensing, separation, encapsulation, and catalysis. In this article, we focus on recent progress and potential applications of ZIFs in food packaging materials. Previous studies have shown that ZIFs can significantly improve the optical, mechanical, barrier, thermal, sustainability, and preservative properties of packaging materials. Moreover, ZIFs can be used as carriers to encapsulate, protect, and control the release of bioactive agents in packaging materials. ZIFs are capable of selectively adsorbing and releasing molecules based on their size, shape, and surface properties. These unique characteristics make them particularly suitable for smart or active food packaging applications. By selectively removing gases (such as oxygen, carbon dioxide, water, or ethylene) ZIFs can improve the shelf life and quality of packaged foods. In addition, they can be employed to control the growth of spoilage microorganisms and minimize oxidation reactions, thereby enhancing the freshness and extending the shelf life of foods. They may also be used to create sensors capable of detecting and indicating food spoilage. For instance, ZIFs that change color or release specific compounds when spoilage products are present can provide visual or chemical indications of food deterioration. This feature is especially valuable in ensuring the safety and quality of packaged food, as it enables consumers and retailers to easily identify spoiled products. ZIFs can be functionalized using various additives, including antioxidants, antimicrobials, pigments, and flavors, which can improve the preservative and sensory properties of packaged foods. Moreover, ZIF-based packaging materials offer sustainability benefits. Unlike traditional plastic packaging, ZIFs are biodegradable and can easily be disposed of without causing harm to the environment, thereby reducing the adverse effects of plastic waste materials. The application of ZIFs in smart/active food packaging offers exciting possibilities for enhancing the shelf life, quality, and safety of foods. With further research and development, ZIF-based packaging could become a sustainable alternative to plastic-based packaging in the food industry. An important aim of this review article is to stimulate further research on the development and application of ZIFs within food packaging materials.


Asunto(s)
Embalaje de Alimentos , Imidazoles , Estructuras Metalorgánicas , Zeolitas , Zeolitas/química , Imidazoles/química , Estructuras Metalorgánicas/química , Nanoestructuras/química , Propiedades de Superficie , Porosidad
2.
Int J Biol Macromol ; 259(Pt 2): 129182, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176499

RESUMEN

Increasing demand for high-quality fresh fruits and vegetables has led to the development of innovative active packaging materials that exhibit controlled release of antimicrobial/antioxidant agents. In this study, composite biopolymer films consisting of methylcellulose (MC) and chitosan nanofibers (ChNF) were fabricated, which contained lactoferrin (LAC)-loaded silver-metal organic framework (Ag-MOF) nanoparticles. The results indicated that the nanoparticles were uniformly distributed throughout the biopolymer films, which led to improvements in tensile strength (56.1 ± 3.2 MPa), thermal stability, water solubility, swelling index, water vapor barrier properties (from 2.2 ± 2.1 to 1.9 ± 1.9 × 10-11 g. m/m2. s. Pa), and UV-shielding effects. The Ag-MOF-LAC2% films also exhibited strong and long-lasting antibacterial activity against E. coli (19.8 ± 5.2 mm) and S. aureus (20.1 ± 3.2 mm), which was attributed to the slow release of antimicrobial LAC from the films. The composite films were shown to maintain the fresh appearance of apples for at least seven days, which was attributed to their antimicrobial and antioxidant activities. Consequently, these composite films have the potential in the assembly of innovative active packaging materials for protecting fresh fruits and vegetables. However, further work is required to ensure their safety and economic viability.


Asunto(s)
Antiinfecciosos , Quitosano , Malus , Nanofibras , Nanopartículas , Metilcelulosa , Antioxidantes/farmacología , Lactoferrina , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Biopolímeros , Embalaje de Alimentos/métodos
3.
Food Chem X ; 20: 100883, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38144784

RESUMEN

As tetracycline antibiotics were used in the poultry sector, their residue in edible animal products may adversely affect food safety and human health. The development of selective and sensitive tetracycline sensors has garnered a lot of interest due to the complexity of food samples. Therefore, a fluorescent sensing probe based on chromium(III)-metal-organic framework was developed for the rapid detection of tetracycline. After the addition of tetracycline, blue emission at λem 410 nm was effectively quenched by the interaction between TC and Cr(III)-metal-organic framework material. Under optimized conditions (sensor concentration: 30 mg/L and pH: 10.0), the sensing probe showed a fast response time (1 min), and low detection limit (0.78 ng/mL) with a linear range (5-45 ng/mL). Interestingly, the Cr(III)-metal-organic framework was successfully applied to quantity tetracycline residue in chicken meat and egg samples with recoveries of 95.17-06.93%. To deduce, our work can provide a new strategy for the direct detection of tetracycline in food samples.

4.
Int J Biol Macromol ; 251: 126334, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37586631

RESUMEN

In this study, antimicrobial biocomposite films based on gelatin-κ-carrageenan (Gκ) with 1, 2 and 4 % lactoferrin (L) loaded chromium-based metal-organic frameworks (L@Cr-MOFs) nanoparticles were synthesized by casting methods. The addition of L loaded Cr-MOFs into Gκ based films increased elongation at break from 2.19 to 14.92 % and decreased the tensile strength from 65.1 to 31.22 MPa. L@Cr-MOFs addition reduced swelling index (from 105 to 70.8 %), water solubility (from 61.3 to 34.63 %) and water vapor permeability (from 2.46 to 2.19 × 10-11 g. m/m2. s). When the additional amount was 4 wt%, the Gκ/L@Cr-MOFs films showed antibacterial effects against Escherichia coli and Staphylococcus aureus with the inhibition zone of 19.7 mm and 20.2 mm, respectively. In addition, strawberries preservation trial shown that the Gκ/L@Cr-MOFs films delayed the growth of spoilage molds on the surface of fruits. This research indicated that Gκ/L@Cr-MOFs are promising active packaging materials for the preservation of perishable fruits.

5.
Mikrochim Acta ; 190(9): 371, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37646854

RESUMEN

The measurement of food contaminants faces a great challenge owing to the increasing demand for safe food, increasing consumption of fast food, and rapidly changing patterns of human consumption. As different types of contaminants in food products can pose different levels of threat to human health, it is desirable to develop specific and rapid methods for their identification and quantification. During the past few years, metal-organic framework (MOF)-based materials have been extensively explored in the development of food safety sensors. MOFs are porous crystalline materials with tunable composition, dynamic porosity, and facile surface functionalization. The construction of high-performance biosensors for a range of applications (e.g., food safety, environmental monitoring, and biochemical diagnostics) can thus be promoted through the synergistic combination of MOFs with aptamers. Accordingly, this review article delineates recent innovations achieved for the aptamer-functionalized MOFs toward the detection of food contaminants. First, we describe the basic concepts involved in the detection of food contaminants in terms of the advantages and disadvantages of the commonly used analytical methods (e.g., DNA-based methods (PCR/real-time PCR/multiplex PCR/digital PCR) and protein-based methods (enzyme-linked immunosorbent assay/immunochromatography assay/immunosensor/mass spectrometry). Afterward, the progress in aptamer-functionalized MOF biosensors is discussed with respect to the sensing mechanisms (e.g., the role of MOFs as signal probes and carriers for loading signal probes) along with their performance evaluation (e.g., in terms of sensitivity). We finally discuss challenges and opportunities associated with the development of aptamer-functionalized MOFs for the measurement of food contaminants.


Asunto(s)
Técnicas Biosensibles , Estructuras Metalorgánicas , Humanos , Inmunoensayo , Oligonucleótidos , Alimentos Procesados
6.
Mikrochim Acta ; 190(7): 253, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37286753

RESUMEN

An innovative aptamer labeled with 5-FAM has been developed with a high affinity for Yersinia enterocolitica (Y. enterocolitica) using graphene oxide (GO) as a quenching platform. The selectivity of the prepared system was evaluated in the presence of common coexisted bacteria like Yersinia pseudotuberculosis, Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, and Salmonella typhimurium. Some experimental factors like pH and stability were investigated. The results showed that in the absence of Y. enterocolitica, aptamer labeled with 5-FAM was bonded with GO, causing fluorescence to be relatively weak. After the addition of Y. enterocolitica, the aptamer is released from the GO surface and binds to the target bacteria, and significantly increases the fluorescence intensity with an excitation wavelength of 410 nm and an emission wavelength of 530 nm. After optimizing all conditions, the system exhibited a wide linear response for Y. enterocolitica in the concentration range 10 to 1.0 × 109 CFU•mL-1 and the limit of detection (LOD) was 3 CFU•mL-1. This system demonstrated that GO-designed aptamers can be successful in detecting Y. enterocolitica in whole-cell forms, making them potentially useful for screening and rapid detection.


Asunto(s)
Yersinia enterocolitica , Yersinia pseudotuberculosis , Límite de Detección , Salmonella typhimurium , Oligonucleótidos , Escherichia coli
7.
Int J Biol Macromol ; 242(Pt 3): 125044, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37224901

RESUMEN

In this study, pectin (PC)/chitosan nanofiber (ChNF) films containing a novel anthocyanin from sumac extract were successfully developed for freshness monitoring and shelf-life extension of shrimp. The physical, barrier, morphological, color, and antibacterial properties of biodegradable films were evaluated. The addition of sumac anthocyanins to the films caused intramolecular interactions (such as hydrogen bonds) in the film structure, as confirmed by using attenuated total reflectance Fourier transform infrared (ATR-FTIR) analysis, suggesting good compatibility of film ingredients. Also, intelligent films showed significant sensitivity to ammonia vapors and changed color from reddish to olive color at the first 5 min. Moreover, the results showed that PC/ChNF and PC/ChNF/sumac films have significant antibacterial activity against Gram-positive bacteria and Gram-negative bacteria. In addition to the good functional characteristics of the smart film, the resulting films showed acceptable physicomechanical properties. So, PC/ChNF/sumac smart film exhibited the strength = 60 MPa with the flexibility = 23.3 %. Likewise, water vapor barrier reduced from 2.5 (×10-11 g. m/m2. s. Pa) to 2.3 (×10-11 g. m/m2. s. Pa) after adding anthocyanin. The results of the application of intelligent film containing anthocyanins of sumac extract for shrimp freshness monitoring showed that the color of the intelligent film changed from reddish to greenish color after 48 h of storage, which shows the high potential of the produced film for monitoring the spoilage of seafood products.


Asunto(s)
Quitosano , Nanofibras , Rhus , Quitosano/química , Antocianinas/farmacología , Antocianinas/química , Pectinas , Concentración de Iones de Hidrógeno , Alimentos Marinos , Antibacterianos/farmacología , Embalaje de Alimentos/métodos
8.
Comb Chem High Throughput Screen ; 26(15): 2598-2606, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36927436

RESUMEN

Biogenic amines (BAs) are compounds deemed to be foodstuff contaminants and are the cause of poisoning or allergy. The main BAs found in foods include histamine, tyramine, putrescine, cadaverine, spermine and spermidine. The number of poisoning cases related to BAs in food has increased, which is reinforcing the need for BAs detection to ensure food safety. BAs are found in varying quantities in different foods such as fish, fruits, meat, cheese, vegetables, beer, and wine. Currently, different analytical techniques are used for BAs detection, as well as sample treatment methods that allow greater sensitivity, higher analyzing speed and lower detection limits. Moreover, BAs can be precursors of nitrosamines, which have been associated with mutagenic and carcinogenic activity. This review aims to provide a general approach to the different detection techniques of the BAs in foods, their concentrations and treatment methods.


Asunto(s)
Aminas Biogénicas , Espectrometría de Masas en Tándem , Animales , Cromatografía Liquida , Cromatografía Líquida de Alta Presión/métodos , Aminas Biogénicas/análisis , Aminas Biogénicas/química , Productos Pesqueros/análisis
9.
Toxicol Rep ; 9: 1066-1075, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36561954

RESUMEN

Tert-butyl hydroquinone (TBHQ) is a food additive commonly used as a more effective protectant in the food, cosmetic and pharmaceutical industries. However, the long-term exposure to TBHQ at higher doses (0.7 mg/kg) results in substantial danger to public health and brings a series of side effects, including cytotoxic, genotoxic, carcinogenic, and mutagenic effects. As a result, the global burden of chronic diseases has fascinated consumers and governments regarding the safety assessment of food additives. Regarding contradictory reports of various research about the application of food additives, the accurate monitoring of food additives is urgent. Notwithstanding, there are reports of the therapeutic effects of TBHQ under pathologic conditions through activation of nuclear factor erythroid 2-related factor 2. Thus, further investigations are required to investigate the impact of TBHQ on public health and evaluate its mechanism of action on various organs and cells. Therefore, this review aimed to investigate TBHQ safety through an overview of its impacts on different tissues, cells, and biological macromolecules as well as its therapeutic effects under pathologic conditions.

10.
Molecules ; 27(10)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35630645

RESUMEN

Nanocomposite biopolymer materials containing colorimetric pH-responsive indicators were prepared from gelatin and chitosan nanofibers. Plant-based extracts from barberry and saffron, which both contained anthocyanins, were used as pH indicators. Incorporation of the anthocyanins into the biopolymer films increased their mechanical, water-barrier, and light-screening properties. Infrared spectroscopy and scanning electron microscopy analysis indicated that a uniform biopolymer matrix was formed, with the anthocyanins distributed evenly throughout them. The anthocyanins in the composite films changed color in response to alterations in pH or ammonia gas levels, which was used to monitor changes in the freshness of packaged fish during storage. The anthocyanins also exhibited antioxidant and antimicrobial activity, which meant that they could also be used to slow down the degradation of the fish. Thus, natural anthocyanins could be used as both freshness indicators and preservatives in biopolymer-based nanocomposite packaging materials. These novel materials may therefore be useful alternatives to synthetic plastics for some food packaging applications, thereby improving the environmental friendliness and sustainability of the food supply.


Asunto(s)
Nanocompuestos , Materiales Inteligentes , Animales , Antocianinas/química , Biopolímeros , Colorimetría , Concentración de Iones de Hidrógeno , Nanocompuestos/química , Extractos Vegetales/química
11.
Adv Colloid Interface Sci ; 300: 102593, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34971916

RESUMEN

Environmental issues such as plastic packaging and high demand for fresh and safe food has increased the interest for developing smart/active food packaging films with colloidal nanoparticles (NPs). Titanium dioxide nanoparticles (TNPs) are cost effective and stable metal oxide NPs which could be used as a functional nano-filler for biodegradable food packaging due to their excellent biocompatibility, photo catalyzing, and antimicrobial properties. This article has comprehensively reviewed the functional properties and advantages of TNPs-containing smart/active films. The advantage of adding TNPs for ameliorating food packaging materials such as their physical, mechanical, moisture/light barrier, optical, thermal resistance, microstructure and chemical properties as well as, antibacterial, and photocatalytic properties are discussed. Also, the practical and migration properties of administrating TNPs in food packaging material are investigated. The ethylene decomposition activity of TNPs containing active films, could be used for increasing the shelf life of fruits/vegetables after harvesting. TNPs are safe with negligible migration rates which could be used for fabrication of multifunctional smart/active packaging films due to their antimicrobial properties and ethylene gas scavenging activities.


Asunto(s)
Nanopartículas del Metal , Nanocompuestos , Embalaje de Alimentos , Titanio
12.
Polymers (Basel) ; 13(24)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34960949

RESUMEN

There is great interest in developing biodegradable biopolymer-based packaging materials whose functional performance is enhanced by incorporating active compounds into them, such as light blockers, plasticizers, crosslinkers, diffusion blockers, antimicrobials, antioxidants, and sensors. However, many of these compounds are volatile, chemically unstable, water-insoluble, matrix incompatible, or have adverse effects on film properties, which makes them difficult to directly incorporate into the packaging materials. These challenges can often be overcome by encapsulating the active compounds within food-grade nanoparticles, which are then introduced into the packaging materials. The presence of these nanoencapsulated active compounds in biopolymer-based coatings or films can greatly improve their functional performance. For example, anthocyanins can be used as light-blockers to retard oxidation reactions, or they can be used as pH/gas/temperature sensors to produce smart indicators to monitor the freshness of packaged foods. Encapsulated botanical extracts (like essential oils) can be used to increase the shelf life of foods due to their antimicrobial and antioxidant activities. The resistance of packaging materials to external factors can be improved by incorporating plasticizers (glycerol, sorbitol), crosslinkers (glutaraldehyde, tannic acid), and fillers (nanoparticles or nanofibers). Nanoenabled delivery systems can also be designed to control the release of active ingredients (such as antimicrobials or antioxidants) into the packaged food over time, which may extend their efficacy. This article reviews the different kinds of nanocarriers available for loading active compounds into these types of packaging materials and then discusses their impact on the optical, mechanical, thermal, barrier, antioxidant, and antimicrobial properties of the packaging materials. Furthermore, it highlights the different kinds of bioactive compounds that can be incorporated into biopolymer-based packaging.

13.
Biol Trace Elem Res ; 199(7): 2779-2787, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32918714

RESUMEN

Considering the importance of vegetables as a source of micronutrients and fibers in a balanced diet, there is still a concern that vegetables could also be a source of toxic heavy metal contaminants. The study aimed to determine the concentrations of lead (Pb), cadmium (Cd), arsenic (As), chromium (Cr), copper (Cu), nickel (Ni), and zinc (Zn) in the salad vegetables sold in Tabriz city, Iran, and to evaluate the probabilistic health risk assessment. The amount of toxic metals in 240 samples was evaluated by atomic absorption spectrophotometer (AAS) method. The average levels of toxic metals in the samples were found to be 1.59, 1.26, 1.42, 4.89, 13.38, 1.01, and 32.65 mg/kg for Pb, Cd, As, Cr, Cu, Ni, and Zn, respectively. According to the results, Zn and Cu had the highest concentration, whereas the lowest concentration belonged to Ni. The rank order of the toxic elements in the samples based on target hazard quotient (THQ) values was Cr > Cd > As > Pb > Cu> Zn > Ni, for both females and males. Leafy vegetables had a higher amount of total target hazard quotient (TTHQ) than tuber crops for both males and females. The carcinogenic risks of As and Pb were 0.032 and 0.03 in the females and 0.22 and 0.19 in males. According to the finding, there may be a potential risk of toxic metals, especially Cr, Cd, and As, for both females and males in Tabriz through the consumption of vegetables.


Asunto(s)
Metales Pesados , Ensaladas , Contaminantes del Suelo , Ciudades , Monitoreo del Ambiente , Femenino , Contaminación de Alimentos/análisis , Humanos , Irán , Masculino , Metales Pesados/análisis , Medición de Riesgo , Contaminantes del Suelo/análisis , Verduras
14.
Adv Pharm Bull ; 10(3): 482-487, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32665910

RESUMEN

Purpose: The present study was conducted to assess the ability of probiotic bacteria and yeasts strains to reduce aflatoxin B1 (AFB1) in gastrointestinal simulated conditions. Aflatoxins are potent carcinogenic and immunosuppressive agents. Acute exposure to a high level of aflatoxins leads to aflatoxicosis, which cause rapid death due to liver failure. It is anticipated that consumption of probiotic microorganisms capable of binding aflatoxins can reduce the risk of AFB1 on human health to a certain extent. Methods: For this purpose, the bacteria (1 × 1010 cfu/mL) and yeasts count (2 × 108 cells/mL) and AFB1 concentration (10 ppb) were adjusted. Then, the samples were incubated in the simulated medium, human gastric secretions and small intestine. The concentration of residual AFB1 was determined using enzyme-linked immunosorbent assay (ELISA). The results were statistically analyzed by SPSS 16 software. Results: The native isolated bacteria and yeasts in the simulated gastrointestinal tract condition showed a significant effect on AFB1 reduction (P <0.05). The AFB1 reduction ability of native probiotic microorganisms was strain dependent. The highest binding ability in bacteria belonged to Lactobacillus rhamnosus (31.14%) and at yeasts belonged to Saccharomyces cerevisiae (30.46%). Conclusion: The use of probiotic strains is the appropriate biological method to reduce AFB1 in the human gastrointestinal tract. Probiotic bacteria could help to decrease the harmful effects of AFB1 in humans through enhancing the food safety.

15.
Adv Colloid Interface Sci ; 280: 102164, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32335381

RESUMEN

In recent years, environmental problems, consumer health concerns, and economic limitations associated with synthetic plastics have led to the application of renewable, biodegradable, and edible resources for developing food packaging. Edible packaging can be important in maintaining the food quality and preventing the microbial and chemical spoilage of foods. Several seeds can produce 'seed-based mucilage' with different techno-functional properties for application in various food products. In the field of packaging, these mucilages can be extruded into coatings and films and improve the barrier properties against the transfer of oxygen and moisture. Likewise, bioactive ingredients can also be incorporated into these mucilages which will extend the shelf life of food products. This study gives an overview of various seed mucilages, their production and characteristics of the films/coatings prepared with them for successful applications in different food products.


Asunto(s)
Películas Comestibles , Industria de Alimentos , Embalaje de Alimentos
16.
Adv Pharm Bull ; 10(1): 56-64, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32002362

RESUMEN

Purpose: The increase of bacterial resistance to common antibacterial agents is one of the major problems of health care systems and hospital infection control programs. In this study, antimicrobial activity of titanium dioxide (TiO2 ) and zinc oxide (ZnO) nanoparticles (NPs) was investigated against E. coli, Salmonella enteritidis, Listeria monocytogenes, and Staphylococcus aureus pathogenic bacteria by determining sensitivity coefficient and kinetics of bacterial death. Methods: Antimicrobial tests were performed with ~106 CFU/mL of each bacterium at baseline. At first, minimum inhibitory concentration (MIC) was concluded by the dilution method and then, death kinetic and susceptibility coefficient of NPs suspensions was determined at 0 to 360 min. treatment time. Results: The results of this study revealed that, the highest susceptibility was observed for L. monocytogenes (Z=0.025 mL/µg) to TiO2 NPs, whereas the lowest susceptibility was obtained in the reaction of ZnO NPs with S. enteritidis (Z=0.0033 mL/µg). The process of bacterial death in NPs suspension was assumed to follow first-degree kinetic and the survival ratio of bacteria decreased by the increase in treatment time. An increase in the concentration of NPs was seen to enhance the bactericidal action. Conclusion: Results showed that L. monocytogenes had higher sensitivity compared to S. enteritidis. The results of this study also demonstrated that TiO2 NPs have a strong antimicrobial effect in comparison with ZnO NPs and it could be employed to aid the control of pathogenic bacteria.

17.
Curr Pharm Biotechnol ; 20(13): 1074-1086, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31309886

RESUMEN

Nowadays, distribution and microorganism resistance against antimicrobial compounds have caused crucial food safety problems. Hence, nanotechnology and zeolite are recognized as new approaches to manage this problem due to their inherent antimicrobial activity. Different studies have confirmed antimicrobial effects of Nano particles (NPs) (metal and metal oxide) and zeolite, by using various techniques to determine antimicrobial mechanism. This review includes an overview of research with the results of studies about antimicrobial mechanisms of nanoparticles and zeolite. Many researches have shown that type, particle size and shape of NPs and zeolite are important factors showing antimicrobial effectiveness. The use of NPs and zeolite as antimicrobial components especially in food technology and medical application can be considered as prominent strategies to overcome pathogenic microorganisms. Nevertheless, further studies are required to minimize the possible toxicity of NPs in order to apply suitable alternatives for disinfectants and antibacterial agents in food applications.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Nanopartículas del Metal/química , Zeolitas/farmacología , Antibacterianos/química , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Nanotecnología , Óxidos , Tamaño de la Partícula , Zeolitas/química
18.
Appl Microbiol Biotechnol ; 103(17): 6853-6866, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31289906

RESUMEN

In recent years, the accumulation of synthetic plastics has led to the development of a serious environmental problem. Nowadays, biodegradable films and coatings have been identified as a new approach to solve this problem by preparing renewable, abundant, low-cost materials. Gums are considered a large group of polysaccharides and polysaccharide derivatives that can easily form viscous solutions at low concentrations. Gums are mainly soluble in water and are composed of sugars like glucose, fructose, and mannose. These compounds are categorized into three groups: plant-origin gums, seaweed-based gums, and microbial gums. Microbial gums are listed as generally recognized as safe (GRAS) by the Food and Drug Administration and have a broad range of physicochemical properties suitable for various pharmacy, medicine, and food applications. In the food industry, they can be used as gelling, viscous, stabilizing, and thickening agents. Among the various materials that can potentially improve the properties of biodegradable packaging films, microbial gums such as gellan, xanthan, pullulan, bacterial cellulose, and curdlan have been the subject of numerous studies. These gums can be extruded into films and coatings with considerable barrier properties against the transport of moisture and oxygen. Microbial gums, due to their microbiological stability, adhesion, cohesion, wettability, solubility, transparency, and mechanical properties, can be used as edible films or coatings. Also, these gums can be applied in combination with bioactive compounds that induce the shelf-life extension of highly perishable products. This review focuses on the properties of films and coatings consisting of xanthan, curdlan, pullulan, gellan, and bacterial cellulose.


Asunto(s)
Embalaje de Alimentos , Conservación de Alimentos , Polisacáridos Bacterianos/química , Bacterias/metabolismo , Biodegradación Ambiental , Biopolímeros/química , Biopolímeros/metabolismo , Polisacáridos Bacterianos/metabolismo , Agua/química
19.
Microb Pathog ; 123: 505-526, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30092260

RESUMEN

In recent year, propagation and resistance of pathogenic microorganisms (bacteria, fungi and virals) to common antimicrobial agents has led to serious health and food problems. Today, nanotechnology science and nanoparticles (NPs) have been identified as a new approach to deal with this problem because of their inherent antimicrobial activity. Several studies have reported that, NPs (metal and metal oxide) are considered as a group of materials that can be studied due to their antimicrobial properties. In this review, we investigated recent studies regarding the antimicrobial activity of NPs with their mechanism of action. Many research has proved that particle size is a significant factor which indicates the antimicrobial effectiveness of NPs. The use of NPs as antimicrobial component especially in the food additives and medical application can be one of the new and considerable strategies for overcoming pathogenic microorganisms. Nevertheless, more studies must be conducted to minimize the possible toxicity of NPs in order to use as suitable alternatives for disinfectants and antibacterial agents in food applications.


Asunto(s)
Antiinfecciosos/farmacología , Bacterias/efectos de los fármacos , Hongos/efectos de los fármacos , Nanopartículas/química , Parásitos/efectos de los fármacos , Virus/efectos de los fármacos , Animales , Antiinfecciosos/química , Antiinfecciosos/uso terapéutico , Conservación de Alimentos , Humanos , Nanopartículas del Metal , Metales , Nanopartículas/uso terapéutico , Nanopartículas/toxicidad , Nanotecnología , Tamaño de la Partícula
20.
Adv Pharm Bull ; 8(2): 191-199, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30023320

RESUMEN

Emulsifiers are a large category of compounds considered as surface active agents or surfactants. An emulsifier acts by reducing the speed of chemical reactions, and enhancing its stability. Bioemulsifiers are known as surface active biomolecule materials, due to their unique features over chemical surfactants, such as non-toxicity, biodegradability, foaming, biocompatibility, efficiency at low concentrations, high selectivity in different pH, temperatures and salinities. Emulsifiers are found in various natural resources and are synthesized by Bacteria, Fungi and Yeast. Bioemulsifier's molecular weight is higher than that of biosurfactants. Emulsion's function is closely related to their chemical structure. Therefore, the aim of this paper was to study the various bioemulsifiers derived from microorganisms used in the drug and food industry. In this manuscript, we studied organisms with biosurfactant producing abilities. These inexpensive substrates could be used in environmental remediation and in the petroleum industry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA