Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
2.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39273372

RESUMEN

The mechanisms underlying severe allergic asthma are complex and unknown, meaning it is a challenge to provide the most appropriate treatment. This study aimed to identify novel biomarkers for stratifying allergic asthmatic patients according to severity, and to uncover the biological mechanisms that lead to the development of the severe uncontrolled phenotype. By using miRNA PCR panels, we analyzed the expression of 752 miRNAs in serum samples from control subjects (n = 15) and mild (n = 11) and severe uncontrolled (n = 10) allergic asthmatic patients. We identified 40 differentially expressed miRNAs between severe uncontrolled and mild allergic asthmatic patients. Functional enrichment analysis revealed signatures related to inflammation, angiogenesis, lipid metabolism and mRNA regulation. A random forest classifier trained with DE miRNAs achieved a high accuracy of 97% for severe uncontrolled patient stratification. Validation of the identified biomarkers was performed on a subset of allergic asthmatic patients from the CAMP cohort at Brigham and Women's Hospital, Harvard Medical School. Four of these miRNAs (hsa-miR-99b-5p, hsa-miR-451a, hsa-miR-326 and hsa-miR-505-3p) were validated, pointing towards their potential as biomarkers for stratifying allergic asthmatic patients by severity and providing insights into severe uncontrolled asthma molecular pathways.


Asunto(s)
Asma , Biomarcadores , Inflamación , Metabolismo de los Lípidos , MicroARNs , Índice de Severidad de la Enfermedad , Humanos , Asma/genética , Asma/sangre , Asma/metabolismo , MicroARNs/genética , MicroARNs/sangre , Femenino , Masculino , Metabolismo de los Lípidos/genética , Adulto , Biomarcadores/sangre , Inflamación/genética , Inflamación/sangre , Inflamación/metabolismo , Persona de Mediana Edad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica
3.
Pediatr Pulmonol ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39193988

RESUMEN

INTRODUCTION: Uncontrolled or severe asthma results in symptomatic usage of short-acting ß2-agonist (SABA) usage. MicroRNAs (miRNAs) are posttranslational regulators that can influence asthma biology. This study aims to identify miRNAs that are associated with increased SABA usage. METHODS: Small RNA sequenced from blood serum of 1,132 children with asthma aged 6 to 14 years in the Genetics of Asthma in Costa Rica Study was used for this analysis. Logistic regression identified miRNAs in patients who required increased SABA usage. These miRNA were validated for association with SABA-induced bronchodilator responsiveness (BDR). Gene target pathway analysis was performed on validated miRNAs. RESULTS: Twenty-one miRNAs were significantly associated with increased SABA usage with OR ranging from 0.87 to 1.23. Two miRNAs, miR-378a-3p and miR-144-3p, had odds ratio 1.14 (1-1.29, p = .05) and 1.11 (1.01-1.22, p = .035), respectively, for increased SABA usage and were also significantly associated with bronchodilator response. Furthermore, a linear regression analysis involving these miRNA and bronchodilator response revealed that increased miR-378a-3p correlated with decreased BDR and increased expression of miR-144-3p correlated with improving pulmonary function with bronchodilators. In gene target Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, the erythroblastosis viral oncogene signaling pathway had among one of the highest fold enrichment and p-value. CONCLUSION: Increased expression of miR-378a-3p and miR-144-3p was seen in this patient population who required increased SABA usage. There were different bronchodilatory effects seen in these two miRNAs, suggesting different potential mechanisms underlying increased SABA usage.

4.
Cell Commun Signal ; 22(1): 347, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943141

RESUMEN

PIWI-interacting RNA (piRNA) is the most abundant small non-coding RNA in animal cells, typically 26-31 nucleotides in length and it binds with PIWI proteins, a subfamily of Argonaute proteins. Initially discovered in germ cells, piRNA is well known for its role in silencing transposons and maintaining genome integrity. However, piRNA is also present in somatic cells as well as in extracellular vesicles and exosomes. While piRNA has been extensively studied in various diseases, particular cancer, its function in immune diseases remains unclear. In this review, we summarize current research on piRNA in immune diseases. We first introduce the basic characteristics, biogenesis and functions of piRNA. Then, we review the association of piRNA with different types of immune diseases, including autoimmune diseases, immunodeficiency diseases, infectious diseases, and other immune-related diseases. piRNA is considered a promising biomarker for diseases, highlighting the need for further research into its potential mechanisms in disease pathogenesis.


Asunto(s)
Enfermedades del Sistema Inmune , ARN Interferente Pequeño , Humanos , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/genética , Animales , Enfermedades del Sistema Inmune/genética , Enfermedades del Sistema Inmune/metabolismo , ARN de Interacción con Piwi
5.
Genes (Basel) ; 15(4)2024 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-38674355

RESUMEN

Inhaled corticosteroids (ICS) are efficacious in the treatment of asthma, which affects more than 300 million people in the world. While genome-wide association studies have identified genes involved in differential treatment responses to ICS in asthma, few studies have evaluated the effects of combined rare and common variants on ICS response among children with asthma. Among children with asthma treated with ICS with whole exome sequencing (WES) data in the PrecisionLink Biobank (91 White and 20 Black children), we examined the effect and contribution of rare and common variants with hospitalizations or emergency department visits. For 12 regions previously associated with asthma and ICS response (DPP10, FBXL7, NDFIP1, TBXT, GLCCI1, HDAC9, TBXAS1, STAT6, GSDMB/ORMDL3, CRHR1, GNGT2, FCER2), we used the combined sum test for the sequence kernel association test (SKAT) adjusting for age, sex, and BMI and stratified by race. Validation was conducted in the Biorepository and Integrative Genomics (BIG) Initiative (83 White and 134 Black children). Using a Bonferroni threshold for the 12 regions tested (i.e., 0.05/12 = 0.004), GSDMB/ORMDL3 was significantly associated with ICS response for the combined effect of rare and common variants (p-value = 0.003) among White children in the PrecisionLink Biobank and replicated in the BIG Initiative (p-value = 0.02). Using WES data, the combined effect of rare and common variants for GSDMB/ORMDL3 was associated with ICS response among asthmatic children in the PrecisionLink Biobank and replicated in the BIG Initiative. This proof-of-concept study demonstrates the power of biobanks of pediatric real-life populations in asthma genomic investigations.


Asunto(s)
Corticoesteroides , Asma , Gasderminas , Proteínas de la Membrana , Humanos , Asma/tratamiento farmacológico , Asma/genética , Niño , Femenino , Masculino , Corticoesteroides/uso terapéutico , Corticoesteroides/administración & dosificación , Administración por Inhalación , Proteínas de la Membrana/genética , Estudio de Asociación del Genoma Completo , Adolescente , Preescolar , Secuenciación del Exoma , Polimorfismo de Nucleótido Simple
6.
Respir Res ; 25(1): 118, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459594

RESUMEN

BACKGROUND: Vitamin D may help to alleviate asthma exacerbation because of its anti-inflammation effect, but the evidence is inconsistent in childhood asthma. MiRNAs are important mediators in asthma pathogenesis and also excellent non-invasive biomarkers. We hypothesized that circulating miRNAs are associated with asthma exacerbation and modified by vitamin D levels. METHODS: We sequenced baseline serum miRNAs from 461 participants in the Childhood Asthma Management Program (CAMP). Logistic regression was used to associate miRNA expression with asthma exacerbation through interaction analysis first and then stratified by vitamin D insufficient and sufficient groups. Microarray from lymphoblastoid B-cells (LCLs) treated by vitamin D or sham of 43 subjects in CAMP were used for validation in vitro. The function of miRNAs was associated with gene modules by weighted gene co-expression network analysis (WGCNA). RESULTS: We identified eleven miRNAs associated with asthma exacerbation with vitamin D effect modification. Of which, five were significant in vitamin D insufficient group and nine were significant in vitamin D sufficient group. Six miRNAs, including hsa-miR-143-3p, hsa-miR-192-5p, hsa-miR-151a-5p, hsa-miR-24-3p, hsa-miR-22-3p and hsa-miR-451a were significantly associated with gene modules of immune-related functions, implying miRNAs may mediate vitamin D effect on asthma exacerbation through immune pathways. In addition, hsa-miR-143-3p and hsa-miR-451a are potential predictors of childhood asthma exacerbation at different vitamin D levels. CONCLUSIONS: miRNAs are potential mediators of asthma exacerbation and their effects are directly impacted by vitamin D levels.


Asunto(s)
Asma , MicroARN Circulante , MicroARNs , Humanos , MicroARNs/metabolismo , MicroARN Circulante/genética , Perfilación de la Expresión Génica , Asma/diagnóstico , Asma/genética , Vitamina D
7.
J Allergy Clin Immunol ; 153(3): 695-704, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38056635

RESUMEN

BACKGROUND: Piwi-interacting RNAs (piRNAs), comprising the largest noncoding RNA group, regulate transcriptional processes. Whether piRNAs are associated with type 2 (T2)-high asthma is unknown. OBJECTIVE: We sought to investigate the association between piRNAs and T2-high asthma in childhood asthma. METHODS: We sequenced plasma samples from 462 subjects in the Childhood Asthma Management Program (CAMP) as the discovery cohort and 1165 subjects in the Genetics of Asthma in Costa Rica Study (GACRS) as a replication cohort. Sequencing reads were filtered first, and piRNA reads were annotated and normalized. Linear regression was used for the association analysis of piRNAs and peripheral blood eosinophil count, total serum IgE level, and long-term asthma exacerbation in children with asthma. Mediation analysis was performed to investigate the effect direction. We then ascertained if the circulating piRNAs were present in asthmatic airway epithelial cells in a Gene Expression Omnibus (GEO; www.ncbi.nlm.nih.gov/geo) public data set. RESULTS: Fifteen piRNAs were significantly associated with eosinophil count in CAMP (P ≤ .05), and 3 were successfully replicated in GACRS. Eleven piRNAs were associated with total IgE in CAMP, and one of these was replicated in GACRS. All 22 significant piRNAs were identified in epithelial cells in vitro, and 6 of these were differentially expressed between subjects with asthma and healthy controls. Fourteen piRNAs were associated with long-term asthma exacerbation, and effect of piRNAs on long-term asthma exacerbation are mediated through eosinophil count and serum IgE level. CONCLUSION: piRNAs are associated with peripheral blood eosinophils and total serum IgE in childhood asthma and may play important roles in T2-high asthma.


Asunto(s)
Asma , ARN de Interacción con Piwi , Niño , Humanos , ARN Interferente Pequeño/genética , Asma/genética , Inmunoglobulina E/genética , Fenotipo
8.
Res Sq ; 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37461659

RESUMEN

Rationale: Bronchodilator response (BDR) is a measure of improvement in airway smooth muscle tone, inhibition of liquid accumulation and mucus section into the lumen in response to short-acting beta-2 agonists that varies among asthmatic patients. MicroRNAs (miRNAs) are well-known post-translational regulators. Identifying miRNAs associated with BDR could lead to a better understanding of the underlying complex pathophysiology. Objective: The purpose of this study is to identify circulating miRNAs associated with bronchodilator response in asthma and decipher possible mechanism of bronchodilator response variation. Methods: We used available small RNA sequencing on blood serum from 1,134 asthmatic children aged 6 to 14 years who participated in the Genetics of Asthma in Costa Rica Study (GACRS). We filtered the participants into high and low bronchodilator response (BDR) quartiles and used DeSeq2 to identify miRNAs with differential expression (DE) in high (N= 277) vs low (N= 278) BDR group. Replication was carried out in the Leukotriene modifier Or Corticosteroids or Corticosteroid-Salmeterol trial (LOCCS), an adult asthma cohort. The putative target genes of DE miRNAs were identified, and pathway enrichment analysis was performed. Results: We identified 10 down-regulated miRNAs having odds ratios (OR) between 0.37 and 0.76 for a doubling of miRNA counts and one up-regulated miRNA (OR=2.26) between high and low BDR group. These were assessed for replication in the LOCCS cohort, where two miRNAs (miR-200b-3p and miR-1246) were associated. Further, functional annotation of 11 DE miRNAs were performed as well as of two replicated miRs. Target genes of these miRs were enriched in regulation of cholesterol biosynthesis by SREBPs, ESR-mediated signaling, G1/S transition, RHO GTPase cycle, and signaling by TGFB family pathways. Conclusion: MiRNAs miR-1246 and miR-200b-3p are associated with both childhood and adult asthma BDR. Our findings add to the growing body of evidence that miRNAs play a significant role in the difference of asthma treatment response among patients as it points to genomic regulatory machinery underlying difference in bronchodilator response among patients. Trial registration: LOCCS cohort [ClinicalTrials.gov number: NCT00156819], GACRS cohort [ClinicalTrials.gov number: NCT00021840].

9.
Cell Rep Med ; 4(6): 101079, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37327781

RESUMEN

The IMPACC cohort, composed of >1,000 hospitalized COVID-19 participants, contains five illness trajectory groups (TGs) during acute infection (first 28 days), ranging from milder (TG1-3) to more severe disease course (TG4) and death (TG5). Here, we report deep immunophenotyping, profiling of >15,000 longitudinal blood and nasal samples from 540 participants of the IMPACC cohort, using 14 distinct assays. These unbiased analyses identify cellular and molecular signatures present within 72 h of hospital admission that distinguish moderate from severe and fatal COVID-19 disease. Importantly, cellular and molecular states also distinguish participants with more severe disease that recover or stabilize within 28 days from those that progress to fatal outcomes (TG4 vs. TG5). Furthermore, our longitudinal design reveals that these biologic states display distinct temporal patterns associated with clinical outcomes. Characterizing host immune responses in relation to heterogeneity in disease course may inform clinical prognosis and opportunities for intervention.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Estudios Longitudinales , Multiómica , Progresión de la Enfermedad
10.
Cells ; 12(11)2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-37296627

RESUMEN

BACKGROUND: Asthmatic patients' responses to inhaled corticosteroids (ICS) are variable and difficult to quantify. We have previously defined a Cross-sectional Asthma STEroid Response (CASTER) measure of ICS response. MicroRNAs (miRNAs) have shown strong effects on asthma and inflammatory processes. OBJECTIVE: The purpose of this study was to identify key associations between circulating miRNAs and ICS response in childhood asthma. METHODS: Small RNA sequencing in peripheral blood serum from 580 children with asthma on ICS treatment from The Genetics of Asthma in Costa Rica Study (GACRS) was used to identify miRNAs associated with ICS response using generalized linear models. Replication was conducted in children on ICS from the Childhood Asthma Management Program (CAMP) cohort. The association between replicated miRNAs and the transcriptome of lymphoblastoid cell lines in response to a glucocorticoid was assessed. RESULTS: The association study on the GACRS cohort identified 36 miRNAs associated with ICS response at 10% false discovery rate (FDR), three of which (miR-28-5p, miR-339-3p, and miR-432-5p) were in the same direction of effect and significant in the CAMP replication cohort. In addition, in vitro steroid response lymphoblastoid gene expression analysis revealed 22 dexamethasone responsive genes were significantly associated with three replicated miRNAs. Furthermore, Weighted Gene Co-expression Network Analysis (WGCNA) revealed a significant association between miR-339-3p and two modules (black and magenta) of genes associated with immune response and inflammation pathways. CONCLUSION: This study highlighted significant association between circulating miRNAs miR-28-5p, miR-339-3p, and miR-432-5p and ICS response. miR-339-3p may be involved in immune dysregulation, which leads to a poor response to ICS treatment.


Asunto(s)
Asma , MicroARN Circulante , MicroARNs , Niño , Humanos , MicroARNs/metabolismo , Estudios Transversales , Asma/tratamiento farmacológico , Asma/genética , Corticoesteroides/uso terapéutico , Genómica
11.
Int J Mol Sci ; 24(9)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37175432

RESUMEN

Intrauterine smoke (IUS) exposure during early childhood has been associated with a number of negative health consequences, including reduced lung function and asthma susceptibility. The biological mechanisms underlying these associations have not been established. MicroRNAs regulate the expression of numerous genes involved in lung development. Thus, investigation of the impact of IUS on miRNA expression during human lung development may elucidate the impact of IUS on post-natal respiratory outcomes. We sought to investigate the effect of IUS exposure on miRNA expression during early lung development. We hypothesized that miRNA-mRNA networks are dysregulated by IUS during human lung development and that these miRNAs may be associated with future risk of asthma and allergy. Human fetal lung samples from a prenatal tissue retrieval program were tested for differential miRNA expression with IUS exposure (measured using placental cotinine concentration). RNA was extracted and miRNA-sequencing was performed. We performed differential expression using IUS exposure, with covariate adjustment. We also considered the above model with an additional sex-by-IUS interaction term, allowing IUS effects to differ by male and female samples. Using paired gene expression profiles, we created sex-stratified miRNA-mRNA correlation networks predictive of IUS using DIABLO. We additionally evaluated whether miRNAs were associated with asthma and allergy outcomes in a cohort of childhood asthma. We profiled pseudoglandular lung miRNA in n = 298 samples, 139 (47%) of which had evidence of IUS exposure. Of 515 miRNAs, 25 were significantly associated with intrauterine smoke exposure (q-value < 0.10). The IUS associated miRNAs were correlated with well-known asthma genes (e.g., ORM1-Like Protein 3, ORDML3) and enriched in disease-relevant pathways (oxidative stress). Eleven IUS-miRNAs were also correlated with clinical measures (e.g., Immunoglobulin E andlungfunction) in children with asthma, further supporting their likely disease relevance. Lastly, we found substantial differences in IUS effects by sex, finding 95 significant IUS-miRNAs in male samples, but only four miRNAs in female samples. The miRNA-mRNA correlation networks were predictive of IUS (AUC = 0.78 in males and 0.86 in females) and suggested that IUS-miRNAs are involved in regulation of disease-relevant genes (e.g., A disintegrin and metalloproteinase domain 19 (ADAM19), LBH regulator of WNT signaling (LBH)) and sex hormone signaling (Coactivator associated methyltransferase 1(CARM1)). Our study demonstrated differential expression of miRNAs by IUS during early prenatal human lung development, which may be modified by sex. Based on their gene targets and correlation to clinical asthma and atopy outcomes, these IUS-miRNAs may be relevant for subsequent allergy and asthma risk. Our study provides insight into the impact of IUS in human fetal lung transcriptional networks and on the developmental origins of asthma and allergic disorders.


Asunto(s)
Asma , MicroARNs , Niño , Humanos , Masculino , Femenino , Preescolar , Embarazo , Humo , Placenta/metabolismo , Asma/genética , Pulmón/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética
12.
Nat Commun ; 14(1): 47, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36599824

RESUMEN

Obesity increases asthma prevalence and severity. However, the underlying mechanisms are poorly understood, and consequently, therapeutic options for asthma patients with obesity remain limited. Here we report that cholecystokinin-a metabolic hormone best known for its role in signaling satiation and fat metabolism-is increased in the lungs of obese mice and that pharmacological blockade of cholecystokinin A receptor signaling reduces obesity-associated airway hyperresponsiveness. Activation of cholecystokinin A receptor by the hormone induces contraction of airway smooth muscle cells. In vivo, cholecystokinin level is elevated in the lungs of both genetically and diet-induced obese mice. Importantly, intranasal administration of cholecystokinin A receptor antagonists (proglumide and devazepide) suppresses the airway hyperresponsiveness in the obese mice. Together, our results reveal an unexpected role for cholecystokinin in the lung and support the repurposing of cholecystokinin A receptor antagonists as a potential therapy for asthma patients with obesity.


Asunto(s)
Asma , Hipersensibilidad Respiratoria , Animales , Ratones , Asma/tratamiento farmacológico , Asma/metabolismo , Colecistoquinina/metabolismo , Pulmón/metabolismo , Ratones Obesos , Obesidad/complicaciones , Obesidad/metabolismo , Receptor de Colecistoquinina A/genética , Receptor de Colecistoquinina A/metabolismo , Hipersensibilidad Respiratoria/tratamiento farmacológico , Hipersensibilidad Respiratoria/metabolismo
13.
Noncoding RNA ; 8(2)2022 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-35447890

RESUMEN

MicroRNAs have been independently associated with asthma and COPD; however, it is unclear if microRNA associations will overlap when evaluating retrospective acute exacerbations. Objective: We hypothesized that peripheral blood microRNAs would be associated with retrospective acute asthma exacerbations in a pediatric asthma cohort and that such associations may also be relevant to acute COPD exacerbations. Methods: We conducted small-RNA sequencing on 374 whole-blood samples from children with asthma ages 6-14 years who participated in the Genetics of Asthma in Costa Rica Study (GACRS) and 450 current and former adult smokers with and without COPD who participated in the COPDGene study. Measurements and Main Results: After QC, we had 351 samples and 649 microRNAs for Differential Expression (DE) analysis between the frequent (n = 183) and no or infrequent exacerbation (n = 168) groups in GACRS. Fifteen upregulated miRs had odds ratios (OR) between 1.22 and 1.59 for a doubling of miR counts, while five downregulated miRs had ORs between 0.57 and 0.8. These were assessed for generalization in COPDGene, where three of the upregulated miRs (miR-532-3p, miR-296-5p, and miR-766-3p) and two of the downregulated miRs (miR-7-5p and miR-451b) replicated. Pathway enrichment analysis showed MAPK and PI3K-Akt signaling pathways were strongly enriched for target genes of DE miRNAs and miRNAs generalizing to COPD exacerbations, as well as infection response pathways to various pathogens. Conclusion: miRs (451b; 7-5p; 532-3p; 296-5p and 766-3p) associated with both childhood asthma and adult COPD exacerbations may play a vital role in airflow obstruction and exacerbations and point to shared genomic regulatory machinery underlying exacerbations in both diseases.

14.
Thorax ; 77(5): 452-460, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34580195

RESUMEN

INTRODUCTION: Asthma is a complex disease with heterogeneous expression/severity. There is growing interest in defining asthma endotypes consistently associated with different responses to therapy, focusing on type 2 inflammation (Th2) as a key pathological mechanism. Current asthma endotypes are defined primarily by clinical/laboratory criteria. Each endotype is likely characterised by distinct molecular mechanisms that identify optimal therapies. METHODS: We applied unsupervised (without a priori clinical criteria) principal component analysis on sputum airway cells RNA-sequencing transcriptomic data from 19 asthmatics from the Severe Asthma Research Program at baseline and 6-8 weeks follow-up after a 40 mg dose of intramuscular corticosteroids. We investigated principal components PC1, PC3 for association with 55 clinical variables. RESULTS: PC3 was associated with baseline Th2 clinical features including blood (rank-sum p=0.0082) and airway (rank-sum p=0.0024) eosinophilia, FEV1 change (Kendall tau-b R=-0.333 (-0.592 to -0.012)) and follow-up FEV1 albuterol response (Kendall tau-b R=0.392 (0.079 to 0.634)). PC1 with blood basophlia (rank-sum p=0.0191). The top 5% genes contributing to PC1, PC3 were enriched for distinct immune system/inflammation ontologies suggesting distinct subject-specific clusters of transcriptomic response to corticosteroids. PC3 association with FEV1 change was reproduced in silico in a comparable independent 14-subject (baseline, 8 weeks after daily inhaled corticosteroids (ICS)) airway epithelial cells microRNAome dataset. CONCLUSIONS: Transcriptomic PCs from this unsupervised methodology define molecular pharmacogenomic endotypes that may yield novel biology underlying different subject-specific responses to corticosteroid therapy in asthma, and optimal personalised asthma care. Top contributing genes to these PCs may suggest new therapeutic targets.


Asunto(s)
Asma , Eosinófilos , Corticoesteroides/uso terapéutico , Asma/tratamiento farmacológico , Asma/genética , Basófilos/patología , Eosinófilos/patología , Humanos , Inflamación , Pulmón , Esputo , Esteroides/uso terapéutico
15.
Allergy Asthma Immunol Res ; 13(4): 576-588, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34212545

RESUMEN

OBJECTIVE: MicroRNAs (miRs) are small non-coding RNA molecules of around 18-22 nucleotides that are key regulators of many biologic processes, particularly inflammation. The purpose of this study was to determine the association of circulating miRs from asthmatic children with seasonal variation in allergic inflammation and asthma symptoms. METHODS: We used available small RNA sequencing on blood serum from 398 children with mild-to-moderate asthma from the Childhood Asthma Management Program. We used seasonal asthma symptom data at the study baseline and allergen affection status from baseline skin prick tests as primary outcomes. We identified differentially expressed (DE) miRs between pairs of seasons using DESeq2. Regression analysis was used to identify associations between allergy status to specific seasonal allergens and DE miRs in 4 seasons and between seasonal asthma symptom data and DE miRs. We performed pathway enrichment analysis for target genes of the DE miRs using DAVID. RESULTS: After quality control, 398 samples underwent differential analysis between the 4 seasons. We found 52 unique miRs from a total of 81 DE miRs across seasons. Further investigation of the association between these miRs and sensitization to seasonal allergens using skin prick tests revealed that 26 unique miRs from a total of 38 miRs were significantly associated with a same-season allergen. Comparison between seasonal asthma symptom data revealed that 2 of these 26 miRs also had significant associations with asthma symptoms in the same seasons: miR-328-3p (P < 0.03) and let-7d-3p (P < 0.05). Enrichment analysis showed that the most enriched pathway clusters were Rap1, Ras, and MAPK signaling pathways. CONCLUSION: Our results show seasonal variation in miR-328-3p and let-7d-3p are significantly associated with seasonal asthma symptoms and seasonal allergies. These indicate a potentially protective role for let-7d-3p and a deleterious role for miR-328-3p in asthmatics sensitized to mulberry. Further work will determine whether these miRs are drivers or results of the allergic response.

16.
J Mol Diagn ; 23(6): 671-682, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33872788

RESUMEN

When sequencing small RNA libraries derived from whole blood, the most abundant microRNAs (miRs) detected are often miR-486-5p, miR-451a, and miR-92a-3p. These highly expressed erythropoietic miRs are released into the sample from red blood cell hemolysis. Next-generation sequencing of these unwanted miRs leads to a waste in sequencing cost and diminished detection of lowly expressed miRNAs, including many potential miRNA biomarkers. Previous work has developed a method to reduce targeted miRNAs using oligonucleotides that bind their target miRNA and prevent its ligation during library construction, although the extent to which oligonucleotides can be multiplexed and their effect on larger cohorts has not been thoroughly explored. We present a method for suppressing detection of three highly abundant heme miRs in a single multiplexed blocking oligonucleotide reaction. In a small paired-sample pilot (n = 8) and a large cohort of samples (n = 901), multiplexed oligos reduced detection of their target miRNAs by approximately 70%, allowing for an approximately 10-fold increase in reads mapping to nonheme miRs and increased detection of very lowly expressed miRs, with minimal off-target effects. By removing all three highly expressed erythropoietic miRNAs from next-generational sequencing libraries, this commercially available multiplexed blocking oligonucleotide method allows for greater detection of lowly expressed biomarkers, improving the efficacy, cost-efficiency, and sensitivity of biomarker studies and diagnostic tests.


Asunto(s)
Hemólisis/genética , MicroARNs/genética , Oligonucleótidos/farmacología , ARN/sangre , Adulto , Estudios de Cohortes , Humanos
17.
J Pers Med ; 11(3)2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33802355

RESUMEN

Corticosteroid resistance causes significant morbidity in asthma, and drug repurposing may identify timely and cost-effective adjunctive treatments for corticosteroid resistance. In 95 subjects from the Childhood Asthma Management Program (CAMP) and 19 subjects from the Severe Asthma Research Program (SARP), corticosteroid response was measured by the change in percent predicted forced expiratory volume in one second (FEV1). In each cohort, differential gene expression analysis was performed comparing poor (resistant) responders, defined as those with zero to negative change in FEV1, to good responders, followed by Connectivity Map (CMap) analysis to identify inversely associated (i.e., negatively connected) drugs that reversed the gene expression profile of poor responders to resemble that of good responders. Mean connectivity scores weighted by sample size were calculated. The top five drug compound candidates underwent in vitro validation in NF-κB-based luciferase reporter A549 cells stimulated by IL-1ß ± dexamethasone. In CAMP and SARP, 134 and 178 respective genes were differentially expressed in poor responders. CMap analysis identified 46 compounds in common across both cohorts with connectivity scores < -50. γ-linolenic acid, ampicillin, exemestane, brinzolamide, and INCA-6 were selected for functional validation. γ-linolenic acid, brinzolamide, and INCA-6 significantly reduced IL-1ß induced luciferase activity and potentiated the anti-inflammatory effect of dexamethasone in A549/NF-κB-luc reporter cells. These results demonstrate how existing drugs, including γ-linolenic acid, brinzolamide, and INCA-6, may be repurposed to improve corticosteroid response in asthmatics.

18.
J Pers Med ; 11(4)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923455

RESUMEN

Of children with recurrent wheezing in early childhood, approximately half go on to develop asthma. MicroRNAs have been described as excellent non-invasive biomarkers due to their prognostic utility. We hypothesized that circulating microRNAs can predict incident asthma and that that prediction might be modified by vitamin D. We selected 75 participants with recurrent wheezing at 3 years old from the Vitamin D Antenatal Asthma Reduction Trial (VDAART). Plasma samples were collected at age 3 and sequenced for small RNA-Seq. The read counts were normalized and filtered by depth and coverage. Logistic regression was employed to associate miRNAs at age 3 with asthma status at age 5. While the overall effect of miRNA on asthma occurrence was weak, we identified 38 miRNAs with a significant interaction effect with vitamin D and 32 miRNAs with a significant main effect in the high vitamin D treatment group in VDAART. We validated the VDAART results in Project Viva for both the main effect and interaction effect. Meta-analysis was performed on both cohorts to obtain the combined effect and a logistic regression model was used to predict incident asthma at age 7 in Project Viva. Of the 23 overlapped miRNAs in the stratified and interaction analysis above, 9 miRNAs were replicated in Project Viva with strong effect size and remained in the meta-analysis of the two populations. The target genes of the 9 miRNAs were enriched for asthma-related Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways. Using logistic regression, microRNA hsa-miR-574-5p had a good prognostic ability for incident asthma prognosis with an area under the receiver operating characteristic (AUROC) of 0.83. In conclusion, miRNAs appear to be good biomarkers of incident asthma, but only when vitamin D level is considered.

19.
J Allergy Clin Immunol ; 147(6): 2181-2190, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33385444

RESUMEN

BACKGROUND: Many microRNAs (miRNAs) have been associated with asthma and chronic obstructive pulmonary disease (COPD). Longitudinal lung function growth trajectories of children with asthma-normal growth, reduced growth (RG), early decline (ED), and RG with an ED (RGED)-have been observed, with RG and RGED associated with adverse outcomes, including COPD. OBJECTIVE: Our aim was to determine whether circulating miRNAs from an early age in children with asthma would be prognostic of reduced lung function growth patterns over the next 16 years. METHODS: We performed small RNA sequencing on sera from 492 children aged 5 to 12 years with mild-to-moderate asthma from the CAMP clinical trial, who were subsequently followed for 12 to 16 years. miRNAs were assessed for differential expression between previously assigned lung function growth patterns. RESULTS: We had 448 samples and 259 miRNAs for differential analysis. In a comparison of the normal and the most severe group (ie, normal growth compared with RGED), we found 1 strongly dysregulated miRNA, hsa-miR-145-5p (P < 8.01E-05). This miR was downregulated in both ED groups (ie, ED and RGED). We verified that miR-145-5p was strongly associated with airway smooth muscle cell growth in vitro. CONCLUSION: Our results showed that miR-145-5p is associated with the ED patterns of lung function growth leading to COPD in children with asthma and additionally increases airway smooth muscle cell proliferation. This represents a significant extension of our understanding of the role of miR-145-5p in COPD and suggests that reduced expression of miR-145-5p is a risk factor for ED of long-term lung function.


Asunto(s)
Regulación de la Expresión Génica , MicroARNs/genética , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/genética , Niño , Preescolar , Regulación hacia Abajo , Volumen Espiratorio Forzado , Perfilación de la Expresión Génica , Humanos , Interferencia de ARN , ARN Mensajero/genética , Pruebas de Función Respiratoria , Índice de Severidad de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...