Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Nat Commun ; 15(1): 1721, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409226

RESUMEN

Quiescence in stem cells is traditionally considered as a state of inactive dormancy or with poised potential. Naive mouse embryonic stem cells (ESCs) can enter quiescence spontaneously or upon inhibition of MYC or fatty acid oxidation, mimicking embryonic diapause in vivo. The molecular underpinning and developmental potential of quiescent ESCs (qESCs) are relatively unexplored. Here we show that qESCs possess an expanded or unrestricted cell fate, capable of generating both embryonic and extraembryonic cell types (e.g., trophoblast stem cells). These cells have a divergent metabolic landscape comparing to the cycling ESCs, with a notable decrease of the one-carbon metabolite S-adenosylmethionine. The metabolic changes are accompanied by a global reduction of H3K27me3, an increase of chromatin accessibility, as well as the de-repression of endogenous retrovirus MERVL and trophoblast master regulators. Depletion of methionine adenosyltransferase Mat2a or deletion of Eed in the polycomb repressive complex 2 results in removal of the developmental constraints towards the extraembryonic lineages. Our findings suggest that quiescent ESCs are not dormant but rather undergo an active transition towards an unrestricted cell fate.


Asunto(s)
Cromatina , Células Madre Embrionarias , Animales , Ratones , Células Madre Embrionarias/metabolismo , Diferenciación Celular , Cromatina/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Complejo Represivo Polycomb 2/metabolismo , S-Adenosilmetionina/metabolismo
3.
STAR Protoc ; 1(3): 100136, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33377030

RESUMEN

Embryonic diapause is a naturally occurring strategy in mammals that determines successful rates of gestation under unfavorable conditions. This dormant state can be captured in the form of quiescent mouse embryonic stem cells (ESCs). Here, we present a step-by-step protocol to derive quiescent ESCs that naturally exist in culture by harnessing the heterogeneity of mitochondrial activity. The derived quiescent ESCs with low mitochondrial activity can be utilized as a surrogate to study stages of early embryonic development. For complete details on the use and execution of this protocol, please refer to Khoa et al. (2020).


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diapausa/fisiología , Células Madre Embrionarias de Ratones/citología , Animales , Diferenciación Celular/fisiología , División Celular/fisiología , Células Cultivadas , Embrión de Mamíferos/citología , Desarrollo Embrionario/fisiología , Células Madre Embrionarias/citología , Ratones , Mitocondrias/metabolismo , Mitocondrias/fisiología , Células Madre Embrionarias de Ratones/fisiología , Células Madre Pluripotentes/citología
4.
Cell Stem Cell ; 27(3): 441-458.e10, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32610040

RESUMEN

Self-renewing embryonic stem cells (ESCs) respond to environmental cues by exiting pluripotency or entering a quiescent state. The molecular basis underlying this fate choice remains unclear. Here, we show that histone acetyltransferase MOF plays a critical role in this process through directly activating fatty acid oxidation (FAO) in the ground-state ESCs. We further show that the ground-state ESCs particularly rely on elevated FAO for oxidative phosphorylation (OXPHOS) and energy production. Mof deletion or FAO inhibition induces bona fide quiescent ground-state ESCs with an intact core pluripotency network and transcriptome signatures akin to the diapaused epiblasts in vivo. Mechanistically, MOF/FAO inhibition acts through reducing mitochondrial respiration (i.e., OXPHOS), which in turn triggers reversible pluripotent quiescence specifically in the ground-state ESCs. The inhibition of FAO/OXPHOS also induces quiescence in naive human ESCs. Our study suggests a general function of the MOF/FAO/OXPHOS axis in regulating cell fate determination in stem cells.


Asunto(s)
Células Madre Embrionarias , Histona Acetiltransferasas , Diferenciación Celular , División Celular , Ácidos Grasos , Histona Acetiltransferasas/genética , Humanos
5.
Cell Rep ; 29(9): 2659-2671.e6, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31775036

RESUMEN

Dynamic establishment of histone modifications in early development coincides with programed cell fate restriction and loss of totipotency beyond the early blastocyst stage. Causal function of histone-modifying enzymes in this process remains to be defined. Here we show that inhibiting histone methyltransferase MLL1 reprograms naive embryonic stem cells (ESCs) to expanded pluripotent stem cells (EPSCs), with differentiation potential toward both embryonic and extraembryonic lineages in vitro and in vivo. MLL1 inhibition or deletion upregulates gene signatures of early blastomere development. The function of MLL1 in restricting induction of EPSCs is mediated partly by Gc, which regulates cellular response to vitamin D signaling. Combined treatment of MLL1 inhibitor and 1α,25-dihydroxyvitamin D3 (1,25-(OH)2D3) cooperatively enhanced functionality of EPSCs, triggering an extended 2C-like state in vitro and robust totipotent-like property in vivo. Our study sheds light on interplay between epigenetics and vitamin D pathway in cell fate determination.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Proteína de la Leucemia Mieloide-Linfoide/antagonistas & inhibidores , Células Madre Pluripotentes/metabolismo , Vitamina D/metabolismo , Diferenciación Celular , Humanos , Transducción de Señal
6.
J Biol Chem ; 292(44): 18256-18257, 2017 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-29101250

RESUMEN

Protein kinases play essential biological roles by phosphorylating a diverse range of signaling molecules, but deciphering their direct physiological targets remains a challenge. A new study by Shinde et al. uses phosphoproteomics to identify glycogen synthase kinase-3 (GSK-3) substrates in mouse embryonic stem cells (mESCs), providing a broad profile of GSK-3 activity and defining a new role for this central kinase in regulating RNA splicing.


Asunto(s)
Glucógeno Sintasa Quinasa 3/metabolismo , Empalme del ARN , Factores de Transcripción/metabolismo , Empalme Alternativo , Animales , Proteínas de Ciclo Celular/metabolismo , Células Madre Embrionarias/enzimología , Células Madre Embrionarias/metabolismo , Técnicas de Silenciamiento del Gen , Ontología de Genes , Glucógeno Sintasa Quinasa 3/genética , Humanos , Fosforilación , Procesamiento Proteico-Postraduccional , Especificidad por Sustrato
7.
J Mol Biol ; 429(10): 1544-1553, 2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27939294

RESUMEN

The level of the transcription factor Nanog directly determines the efficiency of mouse embryonic stem cell self-renewal. Nanog protein exists as a dimer with the dimerization domain composed of a simple repeat region in which every fifth residue is a tryptophan, the tryptophan repeat (WR). Although WR is necessary to enable Nanog to confer LIF-independent self-renewal, the mechanism of dimerization and the effect of modulating dimerization strength have been unclear. Here we couple mutagenesis with functional and dimerization assays to show that the number of tryptophans within the WR is linked to the strength of homodimerization, Sox2 heterodimerization and self-renewal activity. A reduction in the number of tryptophan residues leads initially to a gradual reduction in activity before a precipitous reduction in activity occurs upon reduction in tryptophan number below eight. Further functional attrition follows subsequent tryptophan number reduction with substitution of all tryptophan residues ablating dimerization and self-renewal function completely. A strong positional influence of tryptophans exists, with residues at the WR termini contributing more to Nanog function, particularly at the N-terminal end. Limited proteolysis demonstrates that a structural core of Nanog encompassing the homeodomain and the tryptophan repeat can support LIF-independent colony formation. These results increase understanding of the molecular interactions occurring between transcription factor subunits at the core of the pluripotency gene regulatory network and will enhance our ability to control pluripotent cell self-renewal and differentiation.


Asunto(s)
Células Madre Embrionarias de Ratones/fisiología , Proteína Homeótica Nanog/metabolismo , Multimerización de Proteína , Triptófano/metabolismo , Animales , Análisis Mutacional de ADN , Ratones , Proteína Homeótica Nanog/genética , Factores de Transcripción SOXB1/metabolismo , Triptófano/genética
8.
PLoS One ; 11(7): e0159246, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27409080

RESUMEN

Fibroblast growth factor 5 (Fgf5) has been widely used as a marker for the epiblast in the postimplantation embryo and epiblast stem cells (mEpiSCs) in the mouse, making it valuable for study of differentiation of various tissues and epiblast cells in vivo and in vitro. Here, we report for the first time the generation of Fgf5-P2A-Venus BAC transgenic (Tg) mice and show that the BAC Tg can recapitulate endogenous Fgf5 expression in epiblast and visceral endodermal cells of E6.5 and 7.5 embryos. We also show that Fgf5-P2A-Venus BAC Tg mEpiSCs in the undifferentiated state expressed abundant Venus, and upon reprogramming into naïve state, Venus was suppressed. Furthermore, while most Tg mEpiSCs expressed Venus abundantly, surprisingly the Tg mEpiSCs contained a minor subpopulation of Venus-negative cells that were capable of conversion to Venus-positive cells, indicating that even Fgf5 expression shows dynamic heterogeneity in mEpiSCs. Taken together, Fgf5-P2A-Venus BAC Tg mice and mEpiSCs generated in this study will be useful for developmental biology as well as stem cell biology research.


Asunto(s)
Reprogramación Celular/genética , Cromosomas Artificiales Bacterianos/genética , Células Madre Embrionarias/citología , Endodermo/citología , Factor 5 de Crecimiento de Fibroblastos/genética , Animales , Proteínas Bacterianas/genética , Diferenciación Celular , Células Cultivadas , Proteínas Luminiscentes/genética , Ratones , Ratones Transgénicos
9.
PLoS One ; 11(3): e0150715, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26943822

RESUMEN

Pluripotency is maintained in mouse embryonic stem (ES) cells and is induced from somatic cells by the activation of appropriate transcriptional regulatory networks. Krüppel-like factor gene family members, such as Klf2, Klf4 and Klf5, have important roles in maintaining the undifferentiated state of mouse ES cells as well as in cellular reprogramming, yet it is not known whether other Klf family members exert self-renewal and reprogramming functions when overexpressed. In this study, we examined whether overexpression of any representative Klf family member, such as Klf1-Klf10, would be sufficient for the self-renewal of mouse ES cells. We found that only Klf2, Klf4, and Klf5 produced leukemia inhibitory factor (LIF)-independent self-renewal, although most KLF proteins, if not all, have the ability to occupy the regulatory regions of Nanog, a critical Klf target gene. We also examined whether overexpression of any of Klf1-Klf10 would be sufficient to convert epiblast stem cells into a naïve pluripotent state and found that Klf5 had such reprogramming ability, in addition to Klf2 and Klf4. We also delineated the functional domains of the Klf2 protein for LIF-independent self-renewal and reprogramming. Interestingly, we found that both the N-terminal transcriptional activation and C-terminal zinc finger domains were indispensable for this activity. Taken together, our comprehensive analysis provides new insight into the contribution of Klf family members to mouse ES self-renewal and cellular reprogramming.


Asunto(s)
Autorrenovación de las Células , Reprogramación Celular , Factores de Transcripción de Tipo Kruppel/metabolismo , Células Madre Embrionarias de Ratones/citología , Familia de Multigenes , Animales , Quimera , Inmunoprecipitación de Cromatina , Epítopos/metabolismo , Estratos Germinativos/citología , Células Madre Pluripotentes Inducidas/metabolismo , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/química , Factor Inhibidor de Leucemia/metabolismo , Ratones , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA