Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Fungi (Basel) ; 8(10)2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36294617

RESUMEN

Metarhizium brunneum is a highly effective entomopathogenic fungus that also functions as a plant biostimulant. It can act as both an endophyte and rhizosphere colonizer; however, the mechanisms driving biostimulation are multifactorial. In this work, oilseed rape (Brassica napus) seeds were grown in composts treated with different concentrations of M. brunneum strains ARSEF 4556 or V275, or the M. brunneum-derived volatile organic compounds 1-octen-3-ol and 3-octanone. Biostimulation efficacy was found to be strongly dose dependent. Concentrations of 1 × 106 conidia g-1 compost were found to be most effective for the M. brunneum, whereas dosages of 1 µL 100 g-1 compost were found to be efficacious for the volatiles. These optimized doses were assessed individually and in combined formulations with a hydrogel against oilseed rape (Brassica napus), sitka spruce (Picea sitchensis), maize (Zea mays) and strawberry (Fragaria annanassa). Both volatile compounds were highly effective biostimulants and were found to increase in biostimulatory efficiency when combined with M. brunneum conidia. Hydrogels were not found to interact with the growth process and may offer avenues for novel formulation technologies. This study demonstrates that Metarhizium-derived volatile organic compounds are actively involved in plant growth promotion and have potential for use in novel formulations to increase the growth of a wide range of commercially relevant crops.

2.
Biol Control ; 155: 104527, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33814871

RESUMEN

The entomopathogenic fungus (EPF) Metarhizium brunneum occupies the same ecological niche as entomopathogenic nematodes (EPN), with both competing for insects as a food source in the rhizosphere. Interactions between these biocontrol agents can be antagonistic or synergistic. To better understand these interactions, this study focussed on investigating the effect of M. brunneum volatile organic compounds (VOCs), 1-octen-3-ol and 3-octanone, on EPN survival and behaviour. These VOCs proved to be highly toxic to the infective juveniles (IJs) of the EPN Steinernema carpocapsae, Steinernema feltiae and Heterorhabditis bacteriophora with mortality being dose dependent. Chemotaxis studies of H. bacteriophora IJs in Pluronic F127 gel revealed significant preference for the VOCs compared with controls for all tested concentrations. The VOCs also impacted on the test insects in a dose-dependent manner with 3-octanone being more toxic to Galleria mellonella, Cydia splendana and Curculio elephas larvae than 1-octen-3-ol. Mortality of C. splendana and G. mellonella larvae was significantly higher when exposed to relatively high doses (>25%) of 3-octanone. Lower doses of 3-octanone and 1-octen-3-ol immobilised test insects, which recovered after exposure to fresh air for 2 hrs. In depth studies on H. bacteriophora showed that exposure of IJs to > 10% concentration of 3-octanone or 1-octen-3-ol negatively affected infectivity whereas exposure to lower doses (0.1%, 0.01%) had no effect. The VOCs affected IJs, reducing penetration efficacy and the number of generations inside G. mellonella but they failed to inhibit the bacterial symbiont, Photorhabdus kayaii. The ecological significance of VOCs and how they could influence EPF-EPN insect interactions is discussed.

3.
Biol Control ; 152: 104472, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33390683

RESUMEN

Root knot nematodes (RKNs) cause significant crop losses. Although RKNs and entomopathogenic fungi, such as Metarhizium brunneum, are associated with plant roots, very little is known about the interactions between these two organisms. This study showed that conidia and VOCs of Me. brunneum influenced the behaviour of M. hapla. The response was dependent on the fungal strain, VOC, concentration of both VOC and conidia, and time. Tomatoes planted in soil treated with the highest doses of conidia usually had a higher number of nematodes than untreated control plants. This was particularly obvious for Me. brunneum strain ARSEF 4556, 7 and 14-days post-treatment. The VOCs, 1-octen-3-ol and 3-octanone, lured M. hapla to plants when used at low doses and repelled them at high doses. In Petri dish assays. the VOCs 1-octen-3-ol and 3-octanone, caused 100% mortality of M. hapla at the highest dose tested (20 µl). Very few live M. hapla were recovered from soil treated with the VOC 1-octen-3-ol, especially at the highest doses tested.

4.
Pest Manag Sci ; 75(12): 3392-3404, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31392825

RESUMEN

BACKGROUND: Slugs and snails constitute major crop pests. Withdrawal of metaldehyde has prompted a search for more environmentally friendly yet fast acting molluscicides. This study investigated the response of representative molluscs to conidia and volatile organic compounds (VOCs) of the insect pathogenic fungus Metarhizium brunneum Petch. RESULTS: Conidia of M. brunneum had antifeedant/repellent properties with repellency being dependent upon the fungal strain and conidia concentration. Three commonly produced fungal VOCs, 1-octene, 3-octanone and 1-octen-3-ol, were repellent at low doses (1-5 µL) but could kill slugs and snails on contact or fumigation. At the highest dose tested (10 µL), 100% mortality was achieved for Cornu aspersum Muller (garden snail) and Derocerus reticulatum Muller (grey field slug) within 1 h post-treatment with the first deaths being recorded in <11 min. Aqueous formulations (20% v/v) of the most potent VOCs, 3-octanone and 1-octen-3-ol, could be sprayed onto plants to kill or drive the pest of the crop with no phytotoxic effects. CONCLUSION: The sensitivity of terrestrial molluscs to 3-octanone and 1-octen-3-ol and the ephemeral nature of these compounds makes these excellent candidates for development as mollusc repellents or molluscicides. © 2019 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Gastrópodos , Caracoles Helix , Metarhizium/química , Moluscocidas , Control de Plagas , Compuestos Orgánicos Volátiles , Alquenos , Animales , Relación Dosis-Respuesta a Droga , Cetonas , Octanoles , Esporas Fúngicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA