Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Neurobiol Dis ; : 106537, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38772452

RESUMEN

Hereditary spastic paraplegia (HSP) comprises a large group of neurogenetic disorders characterized by progressive lower extremity spasticity. Neurological evaluation and genetic testing were completed in a Malian family with early-onset HSP. Three children with unaffected consanguineous parents presented with symptoms consistent with childhood-onset complicated HSP. Neurological evaluation found lower limb weakness, spasticity, dysarthria, seizures, and intellectual disability. Brain MRI showed corpus callosum thinning with cortical and spinal cord atrophy, and an EEG detected slow background in the index patient. Whole exome sequencing identified a homozygous missense variant in the adaptor protein (AP) complex 2 alpha-2 subunit (AP2A2) gene. Western blot analysis showed reduced levels of AP2A2 in patient-iPSC derived neuronal cells. Endocytosis of transferrin receptor (TfR) was decreased in patient-derived neurons. In addition, we observed increased axon initial segment length in patient-derived neurons. Xenopus tropicalis tadpoles with ap2a2 knockout showed cerebral edema and progressive seizures. Immunoprecipitation of the mutant human AP-2-appendage alpha-C construct showed defective binding to accessory proteins. We report AP2A2 as a novel genetic entity associated with HSP and provide functional data in patient-derived neuron cells and a frog model. These findings expand our understanding of the mechanism of HSP and improve the genetic diagnosis of this condition.

2.
Nat Commun ; 15(1): 579, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233380

RESUMEN

Frogs are an ecologically diverse and phylogenetically ancient group of anuran amphibians that include important vertebrate cell and developmental model systems, notably the genus Xenopus. Here we report a high-quality reference genome sequence for the western clawed frog, Xenopus tropicalis, along with draft chromosome-scale sequences of three distantly related emerging model frog species, Eleutherodactylus coqui, Engystomops pustulosus, and Hymenochirus boettgeri. Frog chromosomes have remained remarkably stable since the Mesozoic Era, with limited Robertsonian (i.e., arm-preserving) translocations and end-to-end fusions found among the smaller chromosomes. Conservation of synteny includes conservation of centromere locations, marked by centromeric tandem repeats associated with Cenp-a binding surrounded by pericentromeric LINE/L1 elements. This work explores the structure of chromosomes across frogs, using a dense meiotic linkage map for X. tropicalis and chromatin conformation capture (Hi-C) data for all species. Abundant satellite repeats occupy the unusually long (~20 megabase) terminal regions of each chromosome that coincide with high rates of recombination. Both embryonic and differentiated cells show reproducible associations of centromeric chromatin and of telomeres, reflecting a Rabl-like configuration. Our comparative analyses reveal 13 conserved ancestral anuran chromosomes from which contemporary frog genomes were constructed.


Asunto(s)
Cromatina , Evolución Molecular , Animales , Cromatina/genética , Genoma/genética , Anuros/genética , Xenopus/genética , Centrómero/genética
3.
Genet Med ; 26(2): 101023, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37947183

RESUMEN

PURPOSE: We sought to delineate a multisystem disorder caused by recessive cysteine-rich with epidermal growth factor-like domains 1 (CRELD1) gene variants. METHODS: The impact of CRELD1 variants was characterized through an international collaboration utilizing next-generation DNA sequencing, gene knockdown, and protein overexpression in Xenopus tropicalis, and in vitro analysis of patient immune cells. RESULTS: Biallelic variants in CRELD1 were found in 18 participants from 14 families. Affected individuals displayed an array of phenotypes involving developmental delay, early-onset epilepsy, and hypotonia, with about half demonstrating cardiac arrhythmias and some experiencing recurrent infections. Most harbored a frameshift in trans with a missense allele, with 1 recurrent variant, p.(Cys192Tyr), identified in 10 families. X tropicalis tadpoles with creld1 knockdown displayed developmental defects along with increased susceptibility to induced seizures compared with controls. Additionally, human CRELD1 harboring missense variants from affected individuals had reduced protein function, indicated by a diminished ability to induce craniofacial defects when overexpressed in X tropicalis. Finally, baseline analyses of peripheral blood mononuclear cells showed similar proportions of immune cell subtypes in patients compared with healthy donors. CONCLUSION: This patient cohort, combined with experimental data, provide evidence of a multisystem clinical syndrome mediated by recessive variants in CRELD1.


Asunto(s)
Trastornos del Neurodesarrollo , Reinfección , Humanos , Leucocitos Mononucleares , Síndrome , Fenotipo , Arritmias Cardíacas/genética , Trastornos del Neurodesarrollo/genética , Moléculas de Adhesión Celular/genética , Proteínas de la Matriz Extracelular/genética
5.
Dev Cell ; 58(22): 2597-2613.e4, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37673063

RESUMEN

An instructive role for metabolism in embryonic patterning is emerging, although a role for mitochondria is poorly defined. We demonstrate that mitochondrial oxidative metabolism establishes the embryonic patterning center, the Spemann-Mangold Organizer, via hypoxia-inducible factor 1α (Hif-1α) in Xenopus. Hypoxia or decoupling ATP production from oxygen consumption expands the Organizer by activating Hif-1α. In addition, oxygen consumption is 20% higher in the Organizer than in the ventral mesoderm, indicating an elevation in mitochondrial respiration. To reconcile increased mitochondrial respiration with activation of Hif-1α, we discovered that the "free" c-subunit ring of the F1Fo ATP synthase creates an inner mitochondrial membrane leak, which decouples ATP production from respiration at the Organizer, driving Hif-1α activation there. Overexpression of either the c-subunit or Hif-1α is sufficient to induce Organizer cell fates even when ß-catenin is inhibited. We propose that mitochondrial leak metabolism could be a general mechanism for activating Hif-1α and Wnt signaling.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia , Mitocondrias , Organizadores Embrionarios , Animales , Adenosina Trifosfato/metabolismo , Hipoxia , Mitocondrias/metabolismo , Organizadores Embrionarios/metabolismo , Xenopus laevis
7.
Genesis ; 61(5): e23520, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37318954

RESUMEN

The endoplasmic reticulum (ER) membrane protein complex (EMC) is essential for the insertion of a wide variety of transmembrane proteins into the plasma membrane across cell types. Each EMC is composed of Emc1-7, Emc10, and either Emc8 or Emc9. Recent human genetics studies have implicated variants in EMC genes as the basis for a group of human congenital diseases. The patient phenotypes are varied but appear to affect a subset of tissues more prominently than others. Namely, craniofacial development seems to be commonly affected. We previously developed an array of assays in Xenopus tropicalis to assess the effects of emc1 depletion on the neural crest, craniofacial cartilage, and neuromuscular function. We sought to extend this approach to additional EMC components identified in patients with congenital malformations. Through this approach, we determine that EMC9 and EMC10 are important for neural crest development and the development of craniofacial structures. The phenotypes observed in patients and our Xenopus model phenotypes similar to EMC1 loss of function likely due to a similar mechanism of dysfunction in transmembrane protein topogenesis.


Asunto(s)
Retículo Endoplásmico , Cresta Neural , Animales , Humanos , Cresta Neural/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Xenopus/genética , Xenopus/metabolismo
8.
Dev Biol ; 495: 42-53, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36572140

RESUMEN

Congenital Heart Disease (CHD) is the most common birth defect and leading cause of infant mortality, yet molecular mechanisms explaining CHD remain mostly unknown. Sequencing studies are identifying CHD candidate genes at a brisk rate including MINK1, a serine/threonine kinase. However, a plausible molecular mechanism connecting CHD and MINK1 is unknown. Here, we reveal that mink1 is required for proper heart development due to its role in left-right patterning. Mink1 regulates canonical Wnt signaling to define the cell fates of the Spemann Organizer and the Left-Right Organizer, a ciliated structure that breaks bilateral symmetry in the vertebrate embryo. To identify Mink1 targets, we applied an unbiased proteomics approach and identified the high mobility group architectural transcription factor, Hmga2. We report that Hmga2 is necessary and sufficient for regulating Spemann's Organizer. Indeed, we demonstrate that Hmga2 can induce Spemann Organizer cell fates even when ß-catenin, a critical effector of the Wnt signaling pathway, is depleted. In summary, we discover a transcription factor, Hmga2, downstream of Mink1 that is critical for the regulation of Spemann's Organizer, as well as the LRO, defining a plausible mechanism for CHD.


Asunto(s)
Gástrula , Organizadores Embrionarios , Animales , Tipificación del Cuerpo/genética , Diferenciación Celular , Gástrula/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Organizadores Embrionarios/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/metabolismo , Xenopus laevis/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
9.
Int J Mol Sci ; 25(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38203602

RESUMEN

Up to 50% of patients with severe congenital heart disease (CHD) develop life-altering neurodevelopmental disability (NDD). It has been presumed that NDD arises in CHD cases because of hypoxia before, during, or after cardiac surgery. Recent studies detected an enrichment in de novo mutations in CHD and NDD, as well as significant overlap between CHD and NDD candidate genes. However, there is limited evidence demonstrating that genes causing CHD can produce NDD independent of hypoxia. A patient with hypoplastic left heart syndrome and gross motor delay presented with a de novo mutation in SMC5. Modeling mutation of smc5 in Xenopus tropicalis embryos resulted in reduced heart size, decreased brain length, and disrupted pax6 patterning. To evaluate the cardiac development, we induced the conditional knockout (cKO) of Smc5 in mouse cardiomyocytes, which led to the depletion of mature cardiomyocytes and abnormal contractility. To test a role for Smc5 specifically in the brain, we induced cKO in the mouse central nervous system, which resulted in decreased brain volume, and diminished connectivity between areas related to motor function but did not affect vascular or brain ventricular volume. We propose that genetic factors, rather than hypoxia alone, can contribute when NDD and CHD cases occur concurrently.


Asunto(s)
Cardiopatías Congénitas , Humanos , Animales , Ratones , Cardiopatías Congénitas/genética , Encéfalo , Ventrículos Cardíacos , Hipoxia , Miocitos Cardíacos , Xenopus , Proteínas Cromosómicas no Histona , Proteínas de Ciclo Celular/genética , Proteínas de Xenopus
10.
Nat Commun ; 13(1): 6681, 2022 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-36335122

RESUMEN

Transitioning from pluripotency to differentiated cell fates is fundamental to both embryonic development and adult tissue homeostasis. Improving our understanding of this transition would facilitate our ability to manipulate pluripotent cells into tissues for therapeutic use. Here, we show that membrane voltage (Vm) regulates the exit from pluripotency and the onset of germ layer differentiation in the embryo, a process that affects both gastrulation and left-right patterning. By examining candidate genes of congenital heart disease and heterotaxy, we identify KCNH6, a member of the ether-a-go-go class of potassium channels that hyperpolarizes the Vm and thus limits the activation of voltage gated calcium channels, lowering intracellular calcium. In pluripotent embryonic cells, depletion of kcnh6 leads to membrane depolarization, elevation of intracellular calcium levels, and the maintenance of a pluripotent state at the expense of differentiation into ectodermal and myogenic lineages. Using high-resolution temporal transcriptome analysis, we identify the gene regulatory networks downstream of membrane depolarization and calcium signaling and discover that inhibition of the mTOR pathway transitions the pluripotent cell to a differentiated fate. By manipulating Vm using a suite of tools, we establish a bioelectric pathway that regulates pluripotency in vertebrates, including human embryonic stem cells.


Asunto(s)
Células Madre Pluripotentes , Animales , Humanos , Calcio/metabolismo , Potenciales de la Membrana , Diferenciación Celular/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Canales de Potasio Éter-A-Go-Go/metabolismo
11.
Elife ; 112022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36300792

RESUMEN

Wnt signaling is essential for many aspects of embryonic development including the formation of the primary embryonic axis. In addition, excessive Wnt signaling drives multiple diseases including cancer, highlighting its importance for disease pathogenesis. ß-catenin is a key effector in this pathway that translocates into the nucleus and activates Wnt responsive genes. However, due to our lack of understanding of ß-catenin nuclear transport, therapeutic modulation of Wnt signaling has been challenging. Here, we took an unconventional approach to address this long-standing question by exploiting a heterologous model system, the budding yeast Saccharomyces cerevisiae, which contains a conserved nuclear transport machinery. In contrast to prior work, we demonstrate that ß-catenin accumulates in the nucleus in a Ran-dependent manner, suggesting the use of a nuclear transport receptor (NTR). Indeed, a systematic and conditional inhibition of NTRs revealed that only Kap104, the ortholog of Kap-ß2/Transportin-1 (TNPO1), was required for ß-catenin nuclear import. We further demonstrate direct binding between TNPO1 and ß-catenin that is mediated by a conserved PY-NLS. Finally, using Xenopus secondary axis and TCF/LEF (T Cell factor/lymphoid enhancer factor family) reporter assays, we demonstrate that our results in yeast can be directly translated to vertebrates. By elucidating the nuclear localization signal in ß-catenin and its cognate NTR, our study suggests new therapeutic targets for a host of human diseases caused by excessive Wnt signaling. Indeed, we demonstrate that a small chimeric peptide designed to target TNPO1 can reduce Wnt signaling as a first step toward therapeutics.


Asunto(s)
Vía de Señalización Wnt , beta Catenina , Animales , Humanos , beta Catenina/metabolismo , Transporte Activo de Núcleo Celular , Carioferinas/metabolismo , Factores de Transcripción/metabolismo , Señales de Localización Nuclear/metabolismo
12.
Am J Med Genet A ; 188(10): 2869-2878, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35899841

RESUMEN

The Pediatric Genomics Discovery Program (PGDP) at Yale uses next-generation sequencing (NGS) and translational research to evaluate complex patients with a wide range of phenotypes suspected to have rare genetic diseases. We conducted a retrospective cohort analysis of 356 PGDP probands evaluated between June 2015 and July 2020, querying our database for participant demographics, clinical characteristics, NGS results, and diagnostic and research findings. The three most common phenotypes among the entire studied cohort (n = 356) were immune system abnormalities (n = 105, 29%), syndromic or multisystem disease (n = 103, 29%), and cardiovascular system abnormalities (n = 62, 17%). Of 216 patients with final classifications, 77 (36%) received new diagnoses and 139 (64%) were undiagnosed; the remaining 140 patients were still actively being investigated. Monogenetic diagnoses were found in 67 (89%); the largest group had variants in known disease genes but with new contributions such as novel variants (n = 31, 40%) or expanded phenotypes (n = 14, 18%). Finally, five PGDP diagnoses (8%) were suggestive of novel gene-to-phenotype relationships. A broad range of patients can benefit from single subject studies combining NGS and functional molecular analyses. All pediatric providers should consider further genetics evaluations for patients lacking precise molecular diagnoses.


Asunto(s)
Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Estudios de Cohortes , Pruebas Genéticas , Humanos , Fenotipo , Estudios Retrospectivos
13.
Cold Spring Harb Protoc ; 2022(4): Pdb.prot107644, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34244348

RESUMEN

Microinjection is an important technique used to study development in the oocyte and early embryo. In Xenopus, substances such as DNA, mRNA, and morpholino oligonucleotides have traditionally been injected into Xenopus laevis, because of their large embryo size and the relatively long time from their fertilization to first division. In the past few decades, Xenopus tropicalis has become an important model in developmental biology; it is particularly useful in genetic studies. The advent and rapid development of CRISPR-Cas9 technology has provided an array of targeted gene manipulations for which X. tropicalis is particularly suited. The equipment and protocol for X. tropicalis microinjection is broadly transferable from X. laevis There are important differences between the species to consider, however, including the smaller embryo size and faster embryo development time in X. tropicalis There are a number of solutions and reagents that differ in concentration and composition as well. Here we describe a microinjection protocol specifically for studies in X. tropicalis.


Asunto(s)
Microinyecciones , Animales , ARN Mensajero/genética , Xenopus/genética , Xenopus laevis/genética
14.
Cold Spring Harb Protoc ; 2022(4): Pdb.prot106344, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34031209

RESUMEN

Xenopus is a powerful model system for cell and developmental biology in part because frogs produce thousands of eggs and embryos year-round. For cell biological studies, egg extracts can mimic many processes in a cell-free system. For developmental biology, Xenopus embryos are a premier system, combining cut-and-paste embryology with modern gene manipulation tools. Xenopus tropicalis are particularly suited to genetic studies because of their diploid genome, as compared to the tetraploid genome of Xenopus laevis When collecting eggs, there are differences in timing of steps, amounts of hormone administered, and handling of females between these species. In this protocol, X. tropicalis females are induced with a hormone that stimulates ovulation, and then eggs are collected. To administer the ovulation hormone and express eggs, it is necessary to be comfortable with handling frogs. Proficient handling of X. tropicalis requires practice, as they are relatively small, active, and slippery.


Asunto(s)
Genoma , Ovulación , Animales , Diploidia , Femenino , Xenopus , Xenopus laevis/genética
15.
Cold Spring Harb Protoc ; 2022(4): Pdb.prot106369, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34031210

RESUMEN

Xenopus tropicalis is a powerful model organism for cell and developmental biology research. Recently, precise gene-editing methods such as CRISPR-Cas9 have allowed facile creation of mutants. The ability to raise and maintain lines of wild-type and mutant animals through all life stages is thus critical for researchers using this model organism. The long fertile life (>8-10 yr) and relatively hardy nature of X. tropicalis makes this a straightforward process. Environmental parameters such as water temperature, pH, and conductivity often vary slightly among husbandry protocols. However, the stability of these variables is essential for rearing success. This protocol describes conditions to optimally raise and maintain X. tropicalis from embryos to adulthood.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Animales , Larva , Xenopus/genética
16.
Cold Spring Harb Protoc ; 2022(5): Pdb.prot105676, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34031211

RESUMEN

Optical coherence tomography (OCT) imaging can be used to visualize craniocardiac structures in the Xenopus model system. OCT is analogous to ultrasound, utilizing light instead of sound to create a gray-scale image from the echo time delay of infrared light reflected from the specimen. OCT is a high-speed, cross-sectional, label-free imaging modality, which can outline dynamic in vivo morphology at resolutions approaching histological detail. OCT imaging can acquire 2D and 3D data in real time to assess cardiac and facial structures. Additionally, during cardiac imaging, Doppler imaging can be used to assess the blood flow pattern in relation to the intracardiac structures. Importantly, OCT can reproducibly and efficiently provide comprehensive, nondestructive in vivo cardiac and facial phenotyping. Tadpoles do not require preprocessing and thus can be further raised or analyzed after brief immobilization during imaging. The rapid development of the Xenopus model combined with a rapid OCT imaging protocol allows the identification of specific gene/teratogen phenotype relationships in a short period of time. Loss- or gain-of-function experiments can be evaluated in 4-5 d, and OCT imaging only requires ∼5 min per tadpole. Thus, we find this pairing an efficient workflow for screening numerous candidate genes derived from human genomic studies to in-depth mechanistic studies.


Asunto(s)
Rayos Infrarrojos , Tomografía de Coherencia Óptica , Animales , Estudios Transversales , Larva , Xenopus laevis
17.
Cold Spring Harb Protoc ; 2022(4): Pdb.prot106351, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34031212

RESUMEN

Xenopus is a powerful model system for cell and developmental biology in part because frogs produce thousands of eggs and embryos year-round. In vitro fertilization (IVF) is ideal for obtaining developmentally synchronized embryos for microinjection or when natural mating has failed to produce a fertilization. In IVF, females are induced to ovulate, and then eggs are collected by manual expression. After testes are collected from a euthanized male frog, the eggs are fertilized in vitro. The embryos are then treated with cysteine to remove the sticky protective jelly coat. Dejellied embryos are much easier to manipulate during microinjection or when sorting in a Petri dish. The jelly coat is also very difficult to penetrate with an injection needle. After microinjection, embryos are maintained in Petri dishes until desired stages are reached. Although in vitro fertilization in X. laevis and X. tropicalis is similar, critical differences in solutions, handling of testis, response of fertilized eggs directly after introduction of sperm, and developmental timing are required for successful fertilization in X. tropicalis.


Asunto(s)
Fertilización In Vitro , Fertilización , Animales , Femenino , Fertilización/fisiología , Masculino , Espermatozoides/fisiología , Xenopus , Xenopus laevis/fisiología
18.
Cold Spring Harb Protoc ; 2022(4): Pdb.prot106609, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34031213

RESUMEN

Xenopus is a powerful model system for cell and developmental biology in part because frogs produce thousands of eggs and embryos year-round. Natural matings are a simple and common method to obtain embryos for injection or other experimental use or to raise to adulthood. This method does not require sacrificing a male as in vitro fertilization (IVF) does. Male and female frogs are injected with an ovulation hormone, placed together in a mating bucket, and left for 4-6 h or overnight to mate. Embryos are then collected, treated with cysteine to remove the sticky jelly coat, and used for injections and/or raised to later stages or adulthood. For embryos raised past free-swimming stages, the cysteine step can optionally be skipped, and tadpoles can be allowed to hatch naturally from the jelly coat. Although there are many similarities between natural mating protocols for Xenopus laevis and Xenopus tropicalis, there are key differences such as hormone dosage, timing of ovulation, and embryo incubation temperature. Here we provide a specific protocol for inducing natural matings in X. tropicalis.


Asunto(s)
Fertilización In Vitro , Ovulación , Animales , Femenino , Larva , Masculino , Xenopus , Xenopus laevis
19.
Nat Med ; 27(12): 2165-2175, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34887573

RESUMEN

Intracranial aneurysm (IA) rupture leads to subarachnoid hemorrhage, a sudden-onset disease that often causes death or severe disability. Although genome-wide association studies have identified common genetic variants that increase IA risk moderately, the contribution of variants with large effect remains poorly defined. Using whole-exome sequencing, we identified significant enrichment of rare, deleterious mutations in PPIL4, encoding peptidyl-prolyl cis-trans isomerase-like 4, in both familial and index IA cases. Ppil4 depletion in vertebrate models causes intracerebral hemorrhage, defects in cerebrovascular morphology and impaired Wnt signaling. Wild-type, but not IA-mutant, PPIL4 potentiates Wnt signaling by binding JMJD6, a known angiogenesis regulator and Wnt activator. These findings identify a novel PPIL4-dependent Wnt signaling mechanism involved in brain-specific angiogenesis and maintenance of cerebrovascular integrity and implicate PPIL4 gene mutations in the pathogenesis of IA.


Asunto(s)
Encéfalo/irrigación sanguínea , Ciclofilinas/genética , Aneurisma Intracraneal/genética , Neovascularización Patológica/genética , Proteínas de Unión al ARN/genética , Ciclofilinas/fisiología , Humanos , Mutación , Proteínas de Unión al ARN/fisiología , Secuenciación del Exoma , Vía de Señalización Wnt/fisiología
20.
Cell Syst ; 12(11): 1094-1107.e6, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34411509

RESUMEN

Patients with neurodevelopmental disorders, including autism, have an elevated incidence of congenital heart disease, but the extent to which these conditions share molecular mechanisms remains unknown. Here, we use network genetics to identify a convergent molecular network underlying autism and congenital heart disease. This network is impacted by damaging genetic variants from both disorders in multiple independent cohorts of patients, pinpointing 101 genes with shared genetic risk. Network analysis also implicates risk genes for each disorder separately, including 27 previously unidentified genes for autism and 46 for congenital heart disease. For 7 genes with shared risk, we create engineered disruptions in Xenopus tropicalis, confirming both heart and brain developmental abnormalities. The network includes a family of ion channels, such as the sodium transporter SCN2A, linking these functions to early heart and brain development. This study provides a road map for identifying risk genes and pathways involved in co-morbid conditions.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Cardiopatías Congénitas , Trastorno del Espectro Autista/genética , Trastorno Autístico/genética , Cardiopatías Congénitas/genética , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA